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Most of the secreted and plasma membrane proteins are synthesized on membrane-bound
ribosomes on the endoplasmic reticulum (ER). They require engagement of ER-resident chap-
erones and foldases that assist in their folding and maturation. Since protein homeostasis in
the ER is crucial for cellular function, the protein-folding status in the organelle’s lumen is
continually surveyed by a network of signaling pathways, collectively called the unfolded
protein response (UPR). Protein-folding imbalances, or “ER stress,” are detected by highly
conserved sensors that adjust the ER’s protein-folding capacity according to the physiological
needs of the cell.We review recent developments in the field that have provided new insights
into the ER stress-sensing mechanisms used by UPR sensors and the mechanisms by which
they integrate various cellular inputs to adjust the folding capacity of the organelle to accom-
modate to fluctuations in ER protein-folding demands.

THE ENDOPLASMIC RETICULUM AS
A PROTEIN-FOLDING COMPARTMENT

All eukaryotic cells contain an endoplasmic
reticulum (ER), a labyrinthine membranous

network of sheets and tubules. Like all mem-
brane-enclosed organelles, the ER allows the
compartmentalization of essential cellular func-
tions. For the ER, this includes the folding and
maturation of themajority of secreted andmem-
braneproteins.TheER is thought tohave evolved
by invagination of the plasma membrane, mak-
ing the lumen of the ER topologically equivalent

to the outside of the cell (Devos et al. 2004; Baum
and Baum 2014). For this reason, the ER lumen
and its proteome possess unique biochemical
characteristics. The ER client and resident pro-
teins are subjected to specific co- and posttrans-
lational modifications, including various forms
of glycosylation and disulfide bond formation
(Helenius et al. 1992; Braakman and Bulleid
2011; Feige and Hendershot 2011; Gidalevitz
et al. 2013; Ellgaard et al. 2016). Most of these
proteins cross or become embedded in the ER
membrane as they are being synthesized on the
cytosolic surface of the ERby ribosomes targeted
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to the organelle by the signal recognition particle
(Walter and Blobel 1980; Walter et al. 1982). In
this cotranslational protein-targeting mecha-
nism, the nascent polypeptides enter the ER lu-
men through a specialized protein-conducting
channel, the Sec61 translocon, and they are fold-
ed as they grow by ER-resident chaperones (e.g.,
BiP and Grp94) and foldases (e.g., protein disul-
fide isomerases [PDIs]) that assist distinct steps
in theirmaturation (Hammond et al. 1994; Feige
and Hendershot 2011; Gidalevitz et al. 2013).
Multiple maturation steps go hand-in-hand
with quality-control pathways that ensure that
only correctly folded client proteins reach their
final destinations (Kleizen and Braakman 2004;
Anelli and Sitia 2008; Barlowe and Helenius
2016).

About one-third of the human proteome
consists of secreted or transmembrane proteins
targeted to the ER. In steady-state conditions,
the ER faces a constant influx of client proteins
on the order of 0.1–1millionmolecules permin-
ute per cell (Van Cauter et al. 1992; Bromage
et al. 2009; Costantini and Snapp 2013). The
complex three-dimensional architecture of the
ER decreases the molecule diffusion rate up to
threefold relative to that of the cytoplasm (Dayel
et al. 1999; Siggia et al. 2000; Sbalzarini et al.
2006). Together, these high biosynthetic rates
and complex organellar architecture present a
major biophysical challenge to the ER chaper-
ones and foldases that assist the folding of client
ER proteins. Therefore, to ensure protein-fold-
ing homeostasis, the ER relies on mechanisms
that detect protein-folding imbalances. Such
proteostasis surveillance mechanisms adjust
the protein-folding capacity of the organelle to
accommodate to fluctuations in protein-folding
demands imposed by the physiology of cells and
tissues.

THE UNFOLDED PROTEIN RESPONSE
ADJUSTS THE PROTEIN-FOLDING
CAPACITY OF THE ER

The protein-folding status within the ER lumen
is continuously monitored by a set of evolution-
arily conserved signaling pathways, collectively
known as the unfolded protein response (UPR)

(Cox et al. 1993; Cox andWalter 1996; Sidrauski
andWalter 1997; Yoshida et al. 1998, 2001;Niwa
et al. 1999; Harding et al. 2000; Tirasophon et al.
2000). When the ER protein-folding capacity is
exceeded or if dysfunctional proteins that cannot
be properly folded accumulate—conditions re-
ferred to as “ER stress”—the UPR is activated,
allowing the cell to adjust the folding capacity of
the organelle to restore homeostasis. Comple-
mentary UPR actions maintain protein-folding
homeostasis in the ER. First, the UPR reduces
client protein load in the ER by temporarily re-
ducing global protein synthesis (Harding et al.
1999, 2000). Second, it enlarges the ER volume
through endomembrane biosynthesis (Sriburi
et al. 2004; Bommiasamy et al. 2009; Schuck et
al. 2009). Third, it augments the ER-folding ca-
pacity through the up-regulation of chaperones
and foldases (Lee et al. 2003; Acosta-Alvear et
al. 2007). Fourth, it increases the ER protein
turnover capacity through the up-regulation of
ER-associated degradation (ERAD) compo-
nents and ER-phagy (ER-specific autophag-
ic mechanisms), which eliminate misfolded
proteins accumulating in the ER or damaged
portions of the entire organelle, respectively
(Travers et al. 2000; Bernales et al. 2006; Schuck
et al. 2014; Khaminets et al. 2015; Fumagalli et al.
2016; Grumati et al. 2017). Last, if homeostasis is
unachievable, the UPR initiates cell-death pro-
grams that eliminate defective cells for the ben-
efit of the organism (Lin et al. 2007; Lu et al.
2014). The life/death decision involves the inter-
play of molecular timers that allow cells to sense
whether the defect can be fixed in an allotted
time window or whether the cell poses a threat
and must be eliminated (Lin et al. 2007; Lu et al.
2014). In metazoans, three unique ER-resident
UPR sensors of unfolded proteins operate in
parallel to offset ER stress (Cox et al. 1993; Cox
and Walter 1996; Sidrauski and Walter 1997;
Yoshida et al. 1998, 2001; Niwa et al. 1999;
Harding et al. 2000; Tirasophon et al. 2000).
These sensors are the kinase/RNase IRE1, the
kinase PERK, and the membrane-tethered tran-
scription factor ATF6. IRE1 is the most con-
served sensor and exists from yeast to mammals
(Mori 2009). By contrast, ATF6 and PERK are
only found in metazoans. As organisms gained
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biological complexity, it is likely that the addi-
tional complementary ER stress-sensing path-
ways evolved, allowing the fine-tuning of ER ho-
meostasis to match the specific demands of
different cells and tissues, which would explain
how the UPR diversified from a single IRE1-
dependent ER stress-detection mechanism to
multiple ones.

IRE1 is a single-pass transmembrane protein
with an ER lumenal sensor domain and cyto-
plasmic effector kinase/nuclease domains (Fig.
1). There are two IRE1paralogs inhighereukary-
otes (Tirasophon et al. 1998; Wang et al. 1998).
IRE1α is ubiquitously expressed and it is essen-
tial (Zhang et al. 2005), whereas IRE1β is ex-
pressed in epithelial cells that line the intestine
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Figure 1. Three branches of the unfolded protein response (UPR). Three endoplasmic reticulum (ER) stress
sensors, IRE1, PERK, and ATF6, monitor the protein-folding conditions in the ER lumen. Each pathway uses a
unique mechanism of signal transduction that results in the activation of specialized transcription factors that
drive transcription of target genes that alleviate ER stress. The IRE1 and PERK branches also reduce the ER-
folding load by impeding further client protein load in the ER either by degrading ER-targeted messenger RNAs
(mRNAs) or by negatively regulating translation, respectively.
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and airways (Bertolotti et al. 2001; Martino et al.
2013; Tsuru et al. 2013). IRE1 coordinates the
UPR through a well-established yet highly un-
conventional splicingmechanismof themessen-
ger RNAs (mRNAs) encoding the transcription
factors Hac1 in yeast and XBP1 in metazoans
(Cox et al. 1993; Cox andWalter 1996; Sidrauski
andWalter 1997; Yoshida et al. 1998, 2001; Cal-
fon et al. 2002; Aragón et al. 2009; Korennykh
et al. 2009; Li et al. 2010). IRE1 oligomerizes
in the plane of the ER membrane in response
to ER stress (Bertolotti et al. 2001; Aragón et al.
2009; Li et al. 2010; Sundaram et al. 2017). Olig-
omerization allows for trans-autophosphoryla-
tion and allosteric activation of its endonuclease
domain, which initiates the unconventional
splicing of the Hac1 or the XBP1 mRNAs (Cox
et al. 1993; Cox and Walter 1996; Sidrauski and
Walter 1997; Yoshida et al. 1998, 2001; Aragón
et al. 2009; Korennykh et al. 2009; Li et al. 2010).
Spliced XBP1 mRNA encodes the transcription
factor XBP1s, which drives the expression of
several target genes involved in restoring ER
homeostasis, such as those encoding chaper-
ones, foldases, lipid biosynthesis enzymes, and
ERAD components (Lee et al. 2003; Acosta-Al-
vear et al. 2007). While the XBP1 mRNA is the
only known splicing target of IRE1, active IRE1
can also cleave ER-localizedmRNAs in a process
known as regulated IRE1-dependent decay
(RIDD), which limits the amount of client pro-
teins entering the ER, thus helping alleviate pro-
tein-folding stress in the organelle (Fig. 1) (Hol-
lien andWeissman 2006; Hollien et al. 2009) . In
this way, IRE1 counteracts ER stress through
corrective, XBP1s driven, as well as preemptive,
RIDD-dependent mechanisms.

The second branch of the UPR is mediated
by the ER-resident transmembrane serine/thre-
onine kinase PERK (Fig. 1; Harding et al. 1999).
Upon ER stress, and similar to IRE1, PERK
oligomerizes in the plane of the ER membrane,
leading to its autophosphorylation and activa-
tion (Harding et al. 1999, 2002; Bertolotti et al.
2000; Marciniak et al. 2006). Active PERK
phosphorylates the α subunit of the translation
initiation factor 2 (eIF2), a key regulator of pro-
tein synthesis (Shi et al. 1998; Harding et al.
1999, 2002). Phosphorylation of eIF2α inhibits

global translation, reducing the influx of pro-
teins entering the ER, and hence alleviates ER
stress akin to the reduction in protein-folding
load afforded by RIDD. Paradoxically, the
phosphorylation of eIF2α also leads to prefer-
ential translation of a few mRNAs containing
short open reading frames in their 50-UTRs
(50 untranslated regions), an unfortunate misno-
mer. One of these mRNAs encodes for the tran-
scription factor ATF4, which, similar to XBP1,
regulates the expression of target genes that help
alleviate ER stress by increasing the biosynthetic
capacity of the cell, such as those encoding ami-
no acid importers and redox homeostasis regu-
lators (Harding et al. 2003). Like IRE1, PERK
counteracts ER stress through corrective, ATF4-
driven, and preemptive phospho-eIF2α-depen-
dent mechanisms.

The third branch of the UPR is regulated by
ATF6 (Fig. 1). Like IRE1, ATF6 has two homo-
logs in vertebrates, ATF6β and ATF6α, which
are type II transmembrane proteins with cyto-
plasmic transcription factor domains that be-
come severed from the membrane upon ER
stress (Haze et al. 1999, 2001). Neither protein
is essential for normal development in the
mouse, but their combined deletion is embryon-
ic lethal, suggesting they have highly overlapping
functions (Yamamoto et al. 2007). Accumu-
lation of unfolded proteins causes ATF6 to be
exported to the Golgi apparatus by a still-ill-
defined mechanism (Haze et al. 1999). Upon
reaching the Golgi apparatus, ATF6 is sequen-
tially processed by S1P and S2P (site 1 and site 2
proteases), which remove their lumenal domain
(LD) and transmembrane anchor, respectively
(Haze et al. 1999; Ye et al. 2000). This regulated
intramembrane proteolysis mechanism releases
the cytosolic transcription factor portion, ATF6
(N), which is then imported into the nucleus to
activate UPR target genes, sometimes together
with XBP1 as ATF6(N) and XBP1s can hetero-
dimerize (Yamamoto et al. 2007). Unlike PERK
and IRE1, ATF6 does not prevent client protein
loading into the ER. Rather, it increases the ER
volume and its protein-processing and degrada-
tive capacities (Yoshida et al. 1998; Wang et al.
2000; Nadanaka et al. 2006b; Adachi et al. 2008;
Bommiasamy et al. 2009). Thus, it is likely that

G.E. Karagöz et al.

4 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a033886

Laboratory Press 
 at UNIV OF CALIF-SF on January 30, 2019 - Published by Cold Spring Harborhttp://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


the coordinated actions of IRE1, PERK, and
ATF6 serve overlapping regulatory functions,
with preemptive measures that kick in simulta-
neously with corrective ones that, together,
maintain ER-folding homeostasis.

As discussed before, the UPR does not only
safeguard cellular health by adapting the fold-
ing capacity of the ER to cell’s needs, but it can
also drive cell death. IRE1, PERK, and ATF6
detect the same problem, namely, imbalances
in the folding capacity of the ER, yet coordinate
different outputs—adaptation or death—com-
puted from the intensity and time-dependent
activity of each UPR sensor (Lu et al. 2014).
UPR signaling output is likely to be coordinated
in a condition- and cell-type-specific manner to
accommodate to the physiological state of cells
and tissues. Because the UPR induces both pro-
survival and proapoptotic pathways, it sits at the
center of life-or-death decisions that can affect
the progression of numerous diseases, including
neuropathologies, cancer, diabetes, atheroscle-
rosis, and infection by bacterial and viral path-
ogens (Bi et al. 2005; Feldman et al. 2005; Lin et
al. 2007;Mulvey et al. 2007; Zhang andKaufman
2008; Sung et al. 2009; Behrman et al. 2011;
Vidal et al. 2012; Stahl et al. 2013; Lu et al.
2014; Treacy-Abarca and Mukherjee 2015; Tu-
fanli et al. 2017). The double-edged sword be-
havior of the UPR requires robust and precise
mechanisms that allow the exquisitely sensitive
detection of protein-folding perturbations in the
ER. Recent data suggest that a complex and in-
tricate interaction network—formed among
chaperones, unfolded proteins, and the UPR
sensors—tunes the activity of the UPR to allow
the reinstatement of homeostasis while avoiding
premature cell death.

SIGNALING THE ER PROTEIN-FOLDING
STATUS ACROSS THE MEMBRANE

The first step in resolving ER stress is transmit-
ting information on the protein-folding status in
the ER lumen across the ER membrane and into
the cell’s nucleus by activation of UPR tran-
scription factors. For each of the UPR sensors,
the transmission of this information relies on
changes in their oligomerization state. IRE1

and PERK, which share similar structural fea-
tures in their ER-lumenal sensor domains, form
higher-order oligomers during ER stress. This
type of self-association juxtaposes the cytosolic
effector domains of either protein for their acti-
vation (Bertolotti et al. 2000; Aragón et al. 2009;
Li et al. 2010). Impairing ER-lumenal oligomer-
ization of either IRE1 or PERK negatively im-
pacts their activity in the cell, underlining the
importance of oligomerization for their function
(Credle et al. 2005; Carrara et al. 2015a; Karagöz
et al. 2017). ATF6 activation is the antipode of
IRE1 andPERKactivation. InactiveATF6 is held
in the ER in the form of disulfide-linked oligo-
mers, which are reduced before leaving the ERen
route to the Golgi apparatus for activation (Mori
and Nadanaka 2003; Nadanaka et al. 2006a,b,
2007). The precise mechanism by which ATF6
senses unfolded proteins in the ER lumen prior
to its transport to theGolgi apparatus remains to
be defined. Whereas changes in the oligomeri-
zation status of ER stress sensors are evidently
important for activity, the initial step in resolving
ER stress is detecting unfolded proteins in the
ER lumen. The mechanisms by which the UPR
sensors detect ER stress are becoming rapidly
elucidated.

STRESS-SENSING MECHANISMS—EARLY
MODELS

The evolutionary conservation of IRE1 makes it
the most mechanistically understood branch of
the UPR. Two models can describe how IRE1’s
LD senses ER stress: an earlier model in which
the reversible dissociation of the ERHsp-70 type
chaperone BiP from the IRE1 LD is responsible
for activation/deactivation (Bertolotti et al. 2000;
Okamura et al. 2000; Zhou et al. 2006), and a
revised model in which unfolded proteins act as
direct ligands for IRE1’s sensor domain (Fig. 2;
Credle et al. 2005).

The formermodel, which suggested that BiP
is the sole regulator of the UPR, was based on the
main observations that BiP overexpression at-
tenuated UPR signaling and that depleting BiP
activated the UPR (Dorner et al. 1992; Ng et al.
1992; Kohno et al. 1993). The model gained
further traction when additional studies showed
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that BiP binds to IRE1, PERK, and ATF6 in un-
stressed cells, and that it dissociates from them
during acute ER stress (Bertolotti et al. 2000;
Okamura et al. 2000; Shen et al. 2002). Together,
these observations supported that the titration
of BiP from IRE1 by unfolded proteins provided
the molecular switch for IRE1 activation. Ac-
cording to this view, BiP binding sequesters
the UPR sensors in an inactive state and its dis-
sociation upon ER stress licenses their activation
(Bertolotti et al. 2000; Zhou et al. 2006; Oikawa
et al. 2009; Carrara et al. 2015b).

This simple view has been experimentally
refuted as it became evident that BiP is not the
primary regulator of IRE1 activity (Kimata et al.
2004; Pincus et al. 2010). A mutational analysis
of IRE1’s LD in yeast mapped the BiP-binding
site to the juxtamembrane segment (Kimata
et al. 2004; Pincus et al. 2010). Removal of this
region abolished ER stress-regulated BiP bind-
ing but it did not lead to unrestrained activation
of IRE1. Instead, removing the BiP-binding site
in IRE1 resulted in delayed deactivation kinetics,
suggesting that BiP association is crucial for buf-

fering IRE1 activity (Fig. 2; Pincus et al. 2010).
Together, these data suggest that, at least in
yeast, the release of BiP cannot be the primary
trigger for IRE1 activation.

STRUCTURAL INSIGHTS INTO STRESS-
SENSING MECHANISM—DIRECT
ACTIVATION MODEL

A more recent model poses that IRE1 directly
senses ER stress. This model emerged from the
crystal structure of the conserved core region of
the LD (core lumenal domain [cLD]) of yeast
IRE1, which shows architectural similarities
with the major histocompatibility complexes
(MHCs) (Credle et al. 2005). Yeast IRE1 cLD
structure displayed a deep pocket that extends
across a dimerization interface reminiscent of
the peptide-binding groove of the MHCs (Fig.
3A; Credle et al. 2005). Based on the architec-
tural similarity of the yeast IRE1 cLD to that of
MHCs, it was proposed that misfolded proteins
directly interact with the IRE1 cLD, inducing the
formation of active IRE1 oligomers. Mutation of

BiP

Figure 2. IRE1’s endoplasmic reticulum (ER) protein-folding stress-sensing mechanism. In steady-state con-
ditions, the ER-resident chaperone BiP binds IRE1’s sensor domain and shifts IRE1 to a monomeric inactive
state, buffering IRE1’s activity. During ER stress, BiP is titrated to unfolded proteins accumulating in the ER,
relieving its buffering effect on IRE1. Simultaneously, unfolded proteins are directly recognized by IRE1’s
sensor lumenal domain. These unfolded proteins serve as activating ligands that drive IRE1 oligomerization
and activation.
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the amino acids lining the bottom of the pep-
tide-binding groove abolished IRE1 signaling in
cells, providing functional evidence for the im-
portance of these structural elements for IRE1
activation (Credle et al. 2005). A follow-up study
showed that yeast IRE1 selectively binds mis-
folded ER-lumenal proteins in vivo and that
purified yeast IRE1 cLD directly interacts with
peptides (used experimentally as misfolded pro-
tein surrogates) in vitro, leading to its oligomer-

ization (Gardner and Walter 2011). Peptide til-
ing arrays revealed that IRE1 cLD recognizes
peptides with a distinct amino acid composi-
tion bias, consistent with it recognizing exposed
polypeptide stretches that would normally be
buried inside folded proteins (Gardner and
Walter 2011). Together, these observations re-
vealed that IRE1 can sense ER stress directly,
where unfolded proteins act as agonists induc-
ing its oligomerization and activation (Fig. 2).

Yeast Ire1 cLD
pdb: 2be1

A

B

C

Human Ire1 cLD
pdb: 2hz6

aaV307-Y358

αB helix

α-Helix-turn

IF2L

IF2L

IF1L

IF1L

IF1L

IF2L

Human PERK cLD
pdb: 4yzs

Figure 3.Comparison between the crystal structures of the sensor domains of IRE1 and PERK. Crystal structures
of the core lumenal domains (cLDs) of yeast (A), and human IRE1 (B), as well as that of the human PERK cLD
(C) reveal that key structural elements forming the dimerization interface (endoplasmic reticulum [ER]-lumenal
interface 1, IF1L; indicated by dashed lines) are highly conserved among yeast and mammalian IRE1 as well as in
the mammalian PERK cLD. By contrast, the α-helix turn forming oligomerization interface 2 (IF2L, indicated by
the black arrow) in the yeast IRE1 cLD is not conserved in the mammalian ER stress sensors. The structures are
shown in colored ribbon diagram representations on the left and as surface representations in grey on the right.
The major histocompatibility complex (MHC)-like groove in the yeast IRE1 cLD structure is shaded in red. The
αB helix found only in human IRE1α cLD is indicated with an arrow. The distance between the helices sur-
rounding the groove is depicted with double-pointed black arrows.
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STRESS SENSING THROUGH DIRECT
RECOGNITION OF UNFOLDED
PROTEINS—NOVEL INSIGHTS

Differences between the crystal structures of hu-
man and yeast IRE1 cLDs challenge the direct
activation model. Although the crystal structure
of human IRE1α cLD displays conserved struc-
tural elements in the core of the MHC-like fold,
there are three notable differences between the
crystal structures of human and yeast IRE1 cLDs
known to date. First, the helices flanking the
putative peptide-binding groove are too closely
juxtaposed in the human structure to allow pep-
tide binding as has been proposed and modeled
in the yeast protein (Zhou et al. 2006). Second,
the mammalian cLD lacked a second interface,
present in the yeast structure (ER-lumenal inter-
face 2, or IF2L) that provides contacts for higher-
order oligomerization and is indispensable for
IRE1 activation in yeast (Credle et al. 2005).
Third, a prominent α-helix (“αB helix”; residues
V245-I263) in mammalian cLD that is absent in
the yeast IRE1 cLD would prevent formation of
the equivalent of IF2L due to steric hindrance
(Fig. 3B; Zhou et al. 2006). Recent crystal struc-
tures of PERK cLD further complicate the pic-
ture as the oligomerization interface in PERK
cLDdiverges fromboth the human and the yeast
IRE1 cLDs. Similar to the mammalian IRE1
cLD, the helices forming the putative peptide-
binding groove in yeast IRE1 cLDare too close to
each other in the PERK dimer structure to ac-
commodate peptides in the groove (Fig. 3C).

IRE1 represents the most conserved com-
ponent in the UPR network. Thus, rather than
proposing alternative mechanisms for IRE1
activation indifferent species, it seemsmore plau-
sible that the structures of the cLDs of mammali-
an IRE1 and PERK represent different states in a
spectrum of possible conformational states that
the cLDs from any species could assume. After
all, the structure adopted by a protein in a crystal
lattice represents a singular snapshot of one of
many possible conformational states. In this no-
tion, the crystal structures of mammalian IRE1α
orPERKcLDswould represent a “closed” confor-
mation that can shift toward an “open” state to
allow peptide binding in the MHC-like groove

that is clearly apparent and functionally validated
in the structureof theyeastortholog(Gardnerand
Walter 2011; Gardner et al. 2013). Therefore, it
remains entirely plausible that the mammalian
ER stress sensors IRE1/PERK and the yeast IRE1
cLD use a common mechanism of activation
that hinges on direct recognition of unfolded
protein ligands. Indeed, replacing the yeast IRE1
LD with mammalian IRE1 or PERK LDs, as well
as exchanging the LDs of IRE1 and PERK, results
in functional UPR signaling in yeast and mam-
malian cells, respectively, underscoring the exis-
tence of a conserved stress-sensing mechanism
(Bertolotti et al. 2000; Liu et al. 2000; Mai et al.
2018).

Recent biochemical and structural analyses
on the human IRE1α activation mechanism
(Karagöz et al. 2017) showed that, similar to yeast
IRE1, human IRE1α cLD recognizes unfolded
proteins as activating ligands. These studies re-
vealed that the human IRE1α cLD directly binds
select peptides and unfolded proteins (Karagöz
et al. 2017). Notably, peptide arrays revealed
similarities in the peptide recognition princi-
ples of human and yeast IRE1 (Gardner and
Walter 2011; Karagöz et al. 2017). Mammalian
IRE1 cLD’s affinity for peptides varied between
5 and 30 µM, which is in the same order of mag-
nitude as those reported for most chaperones
(Marcinowski et al. 2011; Street et al. 2011; Kara-
göz et al. 2014), and peptide binding induces
the formation of IRE1 cLD oligomers as assess-
ed by analytical ultracentrifugation analyses
(Karagöz et al. 2017). Together, these observa-
tions support the notion that the driving force
for IRE1 oligomerization/activation is the rec-
ognition and binding of unfolded protein li-
gands, that a biochemical signature of unfolded
peptide ligands is recognized by IRE1, and that
such signature is conserved from yeast to mam-
mals (Gardner and Walter 2011; Karagöz et al.
2017).

Further support for the peptide ligand-driv-
en activationmodel of IRE1 comes from nuclear
magnetic resonance (NMR) spectroscopy ex-
periments that provide atomic resolution infor-
mation on dynamic protein complexes. Such
studies revealed that the human IRE1α cLD
scans various conformational states in solution,
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which can explain its plasticity and promiscuity
in recognizing unfolded proteins (Karagöz et al.
2017). NMR experiments also showed that pep-
tide binding maps to the center of theMHC-like
fold in the human IRE1α cLD and that it in-
duces conformational changes in regions of the
protein that were thought to sterically block
IRE1α cLD’s oligomerization (Karagöz et al.
2017). These data support themodel that peptide
binding induces an allosteric conformational
switch that leads to the formation of a functional
oligomerization interface. From solution dynam-
ics of the human IRE1 cLD, a newpicture emerg-
es that supports, first, that the crystal structures
are indeed likelysnapshotsofpossibleconforma-
tional states, and second, that IRE1-peptide in-
teractions allosterically license the first step in
IRE1 activation: its oligomerization (Fig. 4).

The MHC-like fold in the human IRE1α
cLD is enriched in aromatic residues and
displays a negatively charged surface that chem-

ically complements IRE1α-binding peptides.
IRE1-binding peptides havemoderate hydropho-
bicity, suggesting that IRE1 recognizes peptides
with lower aggregation propensity compared to
those typically recognized byERchaperones and
cochaperones, such as BiP and the J proteins
(Flynn et al. 1991; Blond-Elguindi et al. 1993;
Behnke et al. 2016). Supporting this notion, hu-
man and yeast IRE1 cLD-binding peptides only
partially overlap with those bound by BiP, sug-
gesting that the UPR sensors do not compete
with highly abundant BiP for binding sites in
unfolded proteins (Gardner and Walter 2011;
Karagöz et al. 2017). Moreover, human IRE1α
interacts with unfolded proteins in cells (re-
markable considering that BiP exists in levels
that are orders of magnitude higher than those
of IRE1), further corroborating these in vitro
observations (Sundaram et al. 2018).

Recently, it was found that similar to human
IRE1LD, the structurally relatedPERKLDcould

Step 5 Step 2
Step 1

Step 4 Step 3

IRE1 activation

Figure 4. Apo-human IRE1 lumenal domain (LD) dimers are found in equilibrium between closed and open
conformations (step 1). Upon endoplasmic reticulum (ER) stress, unfolded proteins accumulating in the ER
lumen bind the IRE1 LD, stabilizing the sensor domain in its open conformation. Peptide binding also induces a
conformational change in the αB helix and the neighboring structural elements (steps 2 and 3), that facilitate
activation by allowing the formation of an IF2L-like interface in the protein’s LD (step 4). When protein-folding
homeostasis is achieved, the dynamic IRE1 LD oligomers re-adopt their inactive conformation (step 5).
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also recognize unfolded polypeptides. PERK LD
binds polypeptides displayed in a peptide tiling
array (Dalton et al. 2018), and a phage display
strategy showed it specifically interacts with un-
foldedpolypeptides(Wangetal. 2018).Moreover,
PERK displays aggregation prevention properties
similar to thoseof yeast IRE1cLDandchaperones
(Kimata et al. 2007;Wang et al. 2018). Thesefind-
ings suggest that PERK and IRE1 use a common
stress-sensing mechanism that relies on direct
recognition of unfolded proteins.

To date, only one peptide has been cocrystal-
ized with the PERK cLD. This crystal structure
displayed the bound peptide on a cleft that is
involved in the formation of a novel tetrameriza-
tion interface that was mapped based on an ear-
lier PERK cLD crystal structure (Carrara et al.
2015a; Wang et al. 2016, 2018). Notably, in the
human IRE1 cLD crystal structure, the corre-
sponding cleft is occupied by a carboxy-terminal
segment that plays a role in IRE1 LD oligomeri-
zation, as assessed by mutational analyses in
vitro and in vivo (Karagöz et al. 2017). Impor-
tantly, this segment was truncated in the PERK
cLD. The amino-terminal flexible segment in
yeast IRE1 fine-tunes its response, as it allows it
to compete with unfolded polypeptides (Ma-
thuranyanon et al. 2015). Therefore, it is plausi-
ble thatdifferentpeptidesmightoccupydifferent
pockets in the UPR sensors, promoting either
assembly or disassembly of higher-order oligo-
mers. In this way, different ligands could act as
either agonists or antagonists of UPR signaling.
Thus, and even though we currently lack the di-
rect comparison of peptide recognition princi-
ples ofmammalian IRE1 and PERK lumenal do-
mains, it is attractive to speculate that different
unfolded polypeptidesmay regulate the different
ER stress sensors to tip theUPRoutcome toward
life or death.

In these proposed mechanisms, the UPR
sensors do not principally depend on saturation
of BiP by unfolded substrate proteins to engage
with IRE1. Although it currently remains un-
known whether BiP release is a prerequisite for
IRE1 to become receptive to peptide binding,
direct activation by unfolded proteins would
allow the UPR sensors to detect the ER stress
dynamically.

FINE-TUNING THE UPR THROUGH ER
STRESS SENSOR PROTEIN INTERACTORS

Two Distinct Modes of BiP Interaction
with IRE1

Although the ER-chaperone BiP has long been
proposed to be a regulator of the UPR, we only
recently obtained a detailed in vitro characteri-
zation of BiP’s interactionwith theUPR sensors.
BiP consists of an amino-terminal nucleotide-
binding domain (NBD) and a carboxy-terminal
substrate-binding domain (SBD). BiP binds to
unfolded proteins by recognizing hydrophobic
patches (Flynn et al. 1991; Blond-Elguindi et al.
1993) through its SBD (Gething 1999). The
ATPase-coupled conformational changes in BiP
allow binding and release of its substrates. Recent
lines of evidence support that BiP can fine-tune
IRE1’s activity through two different modes of
action: (1) a novel nucleotide-independent in-
teraction involving BiP’s NBD (Carrara et al.
2015b), and (2) by a substrate recognition-like
interaction assisted by the cochaperone ERDJ4
(Amin-Wetzel et al. 2017). A recent study that
used primarily an in vitro reconstitution strategy
suggested noncanonical interactions between
BiP-NBD and IRE1/PERK LDs (Carrara et al.
2015b). A similar interaction was suggested ear-
lier for yeast IRE1 and BiP using an in vivomap-
ping strategy (Todd-Corlett et al. 2007). More-
over, binding of unfolded proteins to BiP’s SBD
relieved the interaction between BiP and IRE1/
PERK LD, suggesting a novel allosteric model
for UPR induction (Carrara et al. 2015b; Kopp
et al. 2018). The precisemechanism behind such
allosteric control (i.e., the release of BiP from
IRE1’s cLD upon substrate binding) remains
to be investigated. Yet, the selective binding of
BiP to ER stress sensors and unfolded proteins
through two different sites in BiP provides an
attractive model in which BiP could facilitate
engaging unfolded proteins with ER stress sen-
sors. Subsequent conformational changes may
allow BiP-release and handover of the unfold-
ed proteins to the ER stress sensors for their
activation.

By itself, BiP is a poorATPase, and it relies on
J-protein cochaperones to enhance its ATPase
activity (Marcinowski et al. 2011; Behnke et al.
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2015).Newdata suggest a role of the ER-lumenal
cochaperone ERDJ4 in regulating IRE1’s activity
through BiP (Amin-Wetzel et al. 2017). In cells,
ERDJ4 depletion increased XBP1 mRNA splic-
ing, suggesting that ERDJ4 behaves as an IRE1
repressor. In vitro, ERDJ4 promoted the forma-
tion of a complex between BiP and IRE1 LD by
breaking IRE1 dimers. These observations sup-
port a scenario in which ERDJ4 associates with
IRE1’s LD to recruit BiP through the stimula-
tion of ATP hydrolysis. Interestingly, depleting
ERDJ4 only resulted in partial activation of IRE1
in cells, suggesting that the surmised silencing of
IRE1 activity by ERDJ4 is not absolute. Consid-
ering that ERDJ4 has a role in ERAD—it inter-
acts with the ERAD component Derlin-1 (Lai et
al. 2012)—it remains possible that the ERDJ4-
dependent BiP action results in partial unfolding
and degradation of IRE1. IRE1 regulates the ex-
pressionof theERDJ4genedownstreamofXBP1
(Lee et al. 2003;Acosta-Alvearet al. 2007;Adam-
son et al. 2016). Thus, it is possible that the BiP/
ERDJ4 interaction is crucial for shutting off
IRE1 signaling, as previously shown for the role
of theBiP/IRE1 interaction inyeast (Kimata et al.
2004; Pincus et al. 2010).Mammals possess eight
different ERDJ proteins (ERDJ1-8) that recog-
nize various clients. Therefore, it is conceivable
that competition for unfolded proteins between
IRE1 and ERDJ4 (and perhaps others), allows
fine-tuning IRE1 activity in higher eukaryotes
to match tissue-specific folding demands.

ER-Resident Chaperones Fine-Tune
IRE1 Activity

Fine-tuning the UPR goes beyond interactions
with the highly conserved chaperone BiP. As
organisms evolved and acquired more complex
proteomes, so did their chaperone repertoire to
accommodate to cell- and tissue-specific pro-
tein-folding demands. Recently, amore complex
interaction network of the UPR sensors with
chaperones has been identified in higher eukary-
otes. The ER-resident chaperones PDIA6 and
Hsp47 were found to fine-tune the UPR by di-
rectly interacting with the UPR sensors. On one
hand, the disulfide isomerase PDIA6 regulates
attenuation of the UPR by interacting with both

IRE1 and PERK LDs and breaking stress-in-
duced disulfide-stabilized oligomers (Eletto et
al. 2014, 2016). On the other hand, the ER chap-
erone Hsp47 was suggested to enhance IRE1
activation by competing with BiP in the initial
stages of ER stress (Sepulveda et al. 2018). These
findings suggest that a complex network of ER
chaperones adjusts the activation/deactivation
dynamics of the UPR sensors in cells and, more-
over, could account for differences in UPR
activity in different tissues. Since Hsp47 is a spe-
cialized chaperone for collagen (Ito and Nagata
2017), it is attractive to contemplate that the
interaction between IRE1 and Hsp47 evolved
to regulate IRE1 activity in cells specialized for
collagen secretion, such as osteoblasts, teno-
cytes, or chondrocytes. By contrast, PDIA6
might regulate the duration of IRE1 activity
through competition with select unfolded pro-
tein substrates for IRE1 LD binding. Together,
these findings underline the existence of a mul-
tilayered regulation system that balances the
magnitude and duration of the UPR according
to the physiological burden of the cell experienc-
ing ER stress.

Translocon Interaction Tunes IRE1
Oligomerization

Nascent polypeptides enter the ER through the
Sec61 translocon. Recent work emphasized the
importance interactions between the translocon
and IRE1 in regulating IRE1’s activity. Disrup-
tion of the Sec61-IRE1 complex deregulates
IRE1 signaling (Plumb et al. 2015; Adamson
et al. 2016; Sundaram et al. 2017, 2018), suggest-
ing that such interaction, much like the interac-
tions with the chaperone network, fine-tunes
IRE1’s activity. It is notable that translocons
are highly abundant, present at levels at least
an order of magnitude higher than those of
IRE1 (Wang et al. 2015). Such disparate stoichi-
ometry suggests that IRE1 associates with spe-
cialized translocon complexes that might be in-
volved in the translocation of select ER clients.
By physically engaging with the translocon, the
cell would ensure that IRE1 is located at the spot
where the action happens, allowing it to moni-
tor protein-folding fidelity as the incoming
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ER-folding clients are cotranslationally inserted
in the ER. In such a scenario, when the chaper-
ones are exhausted during protein-folding stress,
IRE1 could bind to nascent chains that cannot
fold properly, allowing it to sense local changes
in protein-folding load and perhaps single out
the mRNAs that are the source of the problem,
which would then be degraded by RIDD.

UPR SENSORS MONITOR THE HEALTH
OF THE ER MEMBRANE

Besides sensing protein-folding problems in the
lumen of the ER, the ER stress sensors also act as
surveyors of membrane composition. Aberrant
lipid compositions of the ER membrane, re-
ferred to as lipid bilayer stress, can activate the
UPR independently of unfolded protein accu-
mulation in the ER lumen (Kimata et al. 2007;
Promlek et al. 2011; Volmer et al. 2013; Halbleib
et al. 2017; Kono et al. 2017). Yeast IRE1 uses an
amphipathic helix juxtaposed to its transmem-
brane domain to sense and respond to aberrant
physical properties of the ERmembrane. During
lipid bilayer stress, these amphipathic helices
bend the membrane, thermodynamically facili-
tating IRE1 oligomerization (Halbleib et al.
2017). A similar amphipathic juxtamembrane
helix exists in PERK (Halbleib et al. 2017), sug-
gesting the mechanism to sense lipid bilayer
stress may be conserved among ER stress sen-
sors. In this way, ER stress sensors could detect
physicochemical properties of the ER mem-
brane environment, which may be detrimental
for membrane protein folding or for trafficking
through the secretory pathway and, as such,
could negatively impact cell health. Together,
the evidence to date indicates that UPR sensors
integrate various signals to sense and respond to
perturbations in ER homeostasis.

CONCLUDING REMARKS: THE UPR
PROVIDES UNIQUE SOLUTIONS
FOR UNIQUE PROTEOMES

Various physiological and pathological condi-
tions that overwhelm the protein-folding capac-
ity of the ER activate the UPR. It has become
clear that the UPR is indispensable for ensuring

development, proper function, and survival of
professional secretory cells, including anti-
body-secreting plasma cells, collagen-secreting
osteoblasts, hepatocytes, and cells within endo-
crine/exocrine tissues (Reimold et al. 2000, 2001;
Harding et al. 2001; Gass et al. 2002; Zhang et al.
2002, 2005, 2006; Iwakoshi et al. 2003b; Shaffer
et al. 2004; Lee et al. 2005, 2008; Kaser et al. 2008;
Wei et al. 2008; Murakami et al. 2009; Iwawaki
et al. 2010; Saito et al. 2011). Additionally,
emerging evidence suggests that the UPR serves
physiological roles that are crucial for the devel-
opment and maintenance of tissues that are not
classically thought of as “secretory.” Specifically,
the UPR seems to be essential for neuronal
development, differentiation, and maturation,
as well as for maintenance of mature neurons
(Cho et al. 2009; Kawada et al. 2014; Tekko et
al. 2014; Martinez et al. 2016; Murao and Nishi-
toh 2017). It is intriguing that different branches
of the UPR appear to be required by different
tissues to address their physiological needs. For
instance, the PERK branch of the UPR partici-
pates in olfactory receptor (OR) choice though a
feedback process in which unfolded ORs enter-
ing the ER trigger PERK activation (Dalton et al.
2013). RTP1, an OR-specific chaperone that is a
target of the PERK branch of the UPR, is re-
quired for proper trafficking of ORs and is part
of the feedback signal that ascertains onlya single
one of the ∼1000 loci that encode ORs in the
genome is selected for expression (Dalton et al.
2013; Sharma et al. 2017). Whereas IRE1/XBP1
are required for plasma cell differentiation (Rei-
mold et al. 2000; Iwakoshi et al. 2003a; Zhang
et al. 2005), PERK signaling is suppressed in the
process (Maet al. 2010), underscoring thenotion
that in specialized tissues, the UPR sensors and
ER clients might have coevolved to sensitize/de-
sensitize different branches of the UPR in recog-
nition of misfolded stretches of specific client
proteins exposed upon misfolding (Sung et al.
2009; Sharma et al. 2017).

Dysregulation of the UPR contributes to
neuropathologies, diabetes, cancer, metabolic
disease, atherosclerosis, as well as bacterial and
viral infections (for review, see Lin et al. 2008).
In these instances, the different branches of
the UPR are differentially regulated. For exam-
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ple, multiple myeloma, a cancer of plasma cells,
relies on IRE1/XBP1 (Carrasco et al. 2007), and
pharmacologically blocking IRE1 shows anti-
myeloma activity (Papandreou et al. 2011; Mi-
mura et al. 2012). Active IRE1/XBP1 is also
observed in mouse models of insulin resistance
and of atherosclerosis (Ozcan et al. 2004; Tufanli
et al. 2017), making the therapeutic targeting of
this pathway attractive formultiple disease states
(Hotamisligil 2010; Vidal et al. 2012; Martinez
et al. 2016; Tufanli et al. 2017). Similarly, the
foreign proteomes and high biosynthetic de-
mands of viruses and bacterial pathogens differ-
entially turn on or suppress individual UPR
pathways (Mulvey et al. 2007; Sung et al. 2009;
Stahl et al. 2013; Treacy-Abarca and Mukherjee
2015). Altogether, converging lines of evidence
suggest that the UPR gets activated during phys-
iological and pathological conditions, in which
changes in the proteome result in fluctuations of
ER protein-folding demands. As accumulating
data indicate, the activation profile of the UPR
signaling is unique in every cell and relies on
activation of different UPR branches. It is likely
that the shifting composition of different prote-
omes and/or the expression of UPRmodulators,
many of which likely to still be discovered, allow
presentation of different unfolded polypeptide
ligands for the UPR sensors as well as the chap-
erone network to differentially activate each one
of the UPR branches. Such differential activa-
tion of the UPR remains an exciting and still
largely unexplored area of research.
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