
In eukaryotic cells, most secreted and transmembrane 
proteins fold and mature in the lumen of the endoplasmic 
reticulum (ER). Proteins enter the ER as unfolded 
polypeptide chains. Their flux into the ER is variable 
because it can change rapidly in response to programmes 
of cell differentiation, environmental conditions and the 
physiological state of the cell. To handle this dynamic situ-
ation, cells adjust the protein-folding capacity of the ER 
according to their requirements, thereby ensuring that 
the quality of cell-surface and secreted proteins can be 
maintained with high fidelity. Such homeostatic control 
is achieved through the action of signal transduction 
pathways that have sensors facing the ER lumen and 
effectors that convey the message to other compartments 
of the cell. The first clue to the existence of such intracell-
ular signalling events was provided by the observation 
that pharmacological and genetic manipulations that 
increase the load of unfolded ER proteins selectively 
activate the expression of genes that encode ER-resident 
chaperones1. The intracellular signalling pathway that 
mediates this regulation was named the unfolded protein 
response (UPR).

The principles of the UPR are now relatively well 
defined. An imbalance (called ER stress) between the load 
of unfolded proteins that enter the ER and the capacity of 
the cellular machinery that handles this load sets three 
main responses in motion, the first two of which are 
rectifying. First, there is a reduction in the protein load 
that enters the ER, which is a transient adaptation that is 
achieved by lowering protein synthesis and translocation 
into the ER. Second, there is an increase in the capacity 
of the ER to handle unfolded proteins, which is a longer-
term adaptation that entails transcriptional activation of 

UPR target genes, including those that function as part 
of the ER protein-folding machinery. If homeostasis can-
not be re-established then a third mechanism, cell death, 
is triggered, presumably to protect the organism from 
rogue cells that display misfolded proteins.

Three different classes of ER stress transducers have 
been identified. Each class defines a distinct arm of the 
UPR that is mediated by inositol-requiring protein-1 
(IRE1), activating transcription factor-6 (ATF6) or protein 
kinase RNA (PKR)-like ER kinase (PERK). In each 
case, an integral membrane protein senses the protein-
folding status in the ER lumen and transmits this infor-
mation across the ER membrane to the cytosol. The stress 
transducers and their downstream effectors have been 
the subject of detailed reviews2,3. Less has been written 
on how signalling in the UPR is integrated to remodel 
the secretory pathway and how the UPR relates to cell 
survival during ER stress; hence, this Review summarizes 
recent developments in these areas.

IRE1: the conserved core of the UPR

Signalling in the UPR is initiated by ER transmembrane 
proteins, which have lumenal portions that sense the 
protein-folding environment in the ER, and cytoplasmic 
effector portions that interact with the transcriptional or 
translational apparatus. The first such stress transducer 
was identified by a screen for mutations that block the 
activation of a UPR-inducible reporter in yeast. The 
gene in question, IRE1, encodes a type 1 ER-resident 
transmembrane protein with a novel lumenal domain 
and a cytoplasmic portion that contains a protein kinase 
domain4,5 (FIG. 1). In response to unfolded proteins, IRE1 
oligomerizes in the plane of the membrane, allowing 

*The Kimmel Center for 
Biology and Medicine at the 
Skirball Institute, New York 
University School of Medicine, 
540 First Avenue, New York, 
New York 10016, USA. 
‡Howard Hughes Medical 
Institute and Department of 
Biochemistry and Biophysics, 
University of California at San 
Francisco, 600 16th Street, 
San Francisco, California 
94158, USA. 
e-mails: 
ron@saturn.med.nyu.edu; 
pwalter@biochem.ucsf.edu
doi:10.1038/nrm2199

Published online 13 June 2007

ER stress
The consequence of a 

mismatch between the load 

of unfolded and misfolded 

proteins in the endoplasmic 

reticulum and the capacity of 

the cellular machinery that 

copes with that load.

Signal integration in the endoplasmic 
reticulum unfolded protein response
David Ron* and Peter Walter‡

Abstract | The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins 

in its lumen (ER stress) by activating intracellular signal transduction pathways — cumulatively 

called the unfolded protein response (UPR). Together, at least three mechanistically distinct 

arms of the UPR regulate the expression of numerous genes that function within the 

secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, 

amino acids and lipids. The arms of the UPR are integrated to provide a response that 

remodels the secretory apparatus and aligns cellular physiology to the demands imposed 

by ER stress.
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for trans-autophosphorylation of juxtaposed kinase 
domains. Oligomerization can be triggered directly 
by binding of unfolded proteins to the IRE1 lumenal 
domain (which bears an architectural resemblance to 
the peptide-binding domains of major histocompatibility 

complexes6,7), or might involve the release of oligomer-
ization-repressing chaperones, or both (BOX 1). Contrary 
to expectations, however, IRE1 signalling does not entail 
a conventional cascade of sequential kinase activation 
because the only known substrate of the IRE1 kinase 
is IRE1 itself8,9. By a poorly understood mechanism, 
trans-autophosphorylation of the kinase domain of 
IRE1 activates its unusual effector function, which 
causes the precise endonucleolytic cleavage of the only 
known substrate: an mRNA that encodes a transcription 
factor named Hac1 (homologous to ATF/CREB1) in 
yeast10,11 or XBP1 (X-box binding protein-1) in meta-
zoans12,13 (FIG. 1). IRE1 is therefore a bifunctional enzyme, 
possessing both a protein kinase and a site-specific 
endoribonuclease that is regulated by its intrinsic kinase 
module.

IRE1 cuts the precursor Hac1 or XBP1 mRNA twice, 
excising an intervening fragment or intron. The 5′and 
3′ mRNA fragments are then ligated, generating a spliced 
mRNA that encodes an activator of UPR target genes. 
Biochemical and genetic evidence indicates that in yeast, 
ligation of the two ends of the HAC1 mRNA is mediated 
by tRNA ligase (Trl1)14. The enzyme(s) responsible for this 
reaction in higher eukaryotes have not been identified, but 
recent evidence for a tight association of XBP1 mRNA 
with membranes15 indicates that, as in yeast, cleavage and 
ligation occur in association with the ER.

The consequences of this IRE1-dependent splicing 
event differ in yeast and metazoans. In yeast, the HAC1 
mRNA intron represses translation and relief of this repres-
sion is the key activating event of the yeast UPR16. By con-
trast, in metazoans both the precursor and spliced form of 
XBP1 are translated13,17. However, the encoded proteins, 
which differ markedly in sequence owing to a splicing-
mediated frame shift, have different functional proper-
ties. The form of XBP1 encoded in the spliced mRNA 
is more stable13 and works as a potent activator of UPR 

Figure 1 | Signalling by IRE1. Inositol-requiring protein-1 (IRE1) oligomerizes in the plane of the endoplasmic reticulum 

(ER) membrane in stressed cells. Trans-autophosphorylation in its cytosolic kinase domain increases the affinity for 

nucleotides (N), which allosterically activate IRE1 (REF. 9) and unmask a dormant endoribonucleolytic activity97. 

IRE1-mediated sequence-specific cleavage of a single known mRNA (X-box binding protein-1 (XBP1) in higher eukaryotes, 

HAC1 (homologous to ATF/CREB1) in yeast) excises a small RNA fragment (intron). The two ends of the mRNA are ligated 

(tRNA ligase (Trl1) has this role in yeast14 but the identity of the ligase is unknown in metazoans), which leads to a frame 

shift in the coding sequence (shown in the figure as a colour change from yellow to red after removal of the intron). Spliced 

XBP1 mRNA encodes a potent transcriptional activator (XBP1s), whereas the unspliced XBP1 mRNA encodes XBP1u, an 

inhibitor of the unfolded protein response (UPR)17. In yeast, the Hac1/XBP1 pathway activates most of the UPR, whereas in 

mammals, it appears that XBP1 regulates a subset of UPR genes that promote ER-associated degradation (ERAD) of 

misfolded proteins and ER biogenesis48. IRE1 can also act by alternative means. In mammals, recruitment of TRAF2 (tumour 

necrosis factor receptor (TNFR)-associated factor-2) by phosphorylated IRE1 allows it to signal to Jun N-terminal kinase 

(JNK)22 and alter intracellular signalling (for example, resulting in insulin resistance66). The IRE1–TRAF2 complex has also 

been linked to caspase-12 activation and cell death23.  In cultured Drosophila melanogaster cells, activated IRE1 can 

promote the cleavage of various ER-localized mRNAs, leading to their degradation26. This reduces the load on the stressed 

ER and might facilitate reprogramming of the ER-associated protein synthesis and translocation machinery. It is unknown 

whether IRE1 cleaves these mRNAs directly or whether it promotes their degradation by activating or recruiting other 

RNases. JNKK, JNK kinase; JNKKK, JNKK kinase. 
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target genes12, whereas the protein encoded by the pre-
cursor mRNA is labile and represses UPR target genes.

In addition to post-transcriptional regulation by 
IRE1-dependent splicing, HAC1 and XBP1 mRNAs 
are also transcriptional targets of the UPR. In yeast, 
HAC1 mRNA production is induced under conditions 
of severe protein misfolding in the ER, and the result-
ing increase in the Hac1 transcription factor drives a 
qualitatively different transcription programme called 
the super-UPR18. In metazoan cells, levels of XBP1 

mRNA also increase upon UPR induction and continue 
to rise as ER stress declines and IRE1 is inactivated17. 
Therefore, the new XBP1 mRNA remains in its precur-
sor, unspliced form, which encodes an inhibitor of XBP1 
signalling. This might serve to terminate signalling by 
a combination of inhibitory heterodimerization with 
spliced XBP1 and competition for binding sites17. The 
XBP1 form derived from the unspliced mRNA might 
also sharpen the response, conferring a switch-like 
property to XBP1-mediated gene regulation.

Yeast IRE1 and HAC1 function in a linear pathway, 
as revealed by profiling, which showed that there was 
substantial overlap of the defect in gene expression in 
cells that lacked either gene19. The situation in higher 
eukaryotes is less clear. Mouse embryos that lack either 
IRE1 or XBP1 perish at a similar early stage of gestation, 
suggesting that XBP1 mediates critical functions of IRE1. 
Furthermore, genome-wide computational approaches 
have uncovered no other mammalian mRNAs with 
overlapping long open reading frames and a short intron 
flanked by IRE1 cleavage sites (features that are expected 
of IRE1 substrates)20. However, expression profiling in 
Caenorhabditis elegans has revealed non-overlapping 
defects in animals with mutations in ire-1 and xbp-1, 
which suggests the existence of alternative IRE-1 effectors 
in that species21. Metazoan IRE1 probably has signalling 
functions beyond its nucleolytic activity. For example, 
mammalian IRE1 activates the stress-induced Jun 
N-terminal kinase (JNK)22 and interacts with compo-
nents of the cell-death machinery, such as caspase-12, 
independently of its RNase activity23,24. However, apart 
from indirect evidence for a contribution to the death of 
ER-stressed cells25, the physiological significance of such 
pathway branches remains unclear.

Recently, analysis of mRNAs expressed in 
ER-stressed Drosophila melanogaster cells uncovered 
evidence for widespread IRE1-dependent degradation of 
ER-associated mRNAs26. This process is likely to repre-
sent an XBP1-independent post-transcriptional mecha-
nism for IRE1 control of gene expression that remodels 
the repertoire of proteins translated in ER-stressed cells. 
It is unknown whether the nuclease that initiates these 
events is IRE1 itself, functioning in a mode of much 
relaxed specificity, or another, yet-to-be-identified 
nuclease that is recruited or locally activated by IRE1.

ATF6: the UPR and regulated proteolysis

A search for additional proteins that bind UPR-activated 
promoter elements led to the identification of ATF6, a 
founding member of a novel class of metazoan-specific 
ER stress transducers27. These are synthesized as inactive 
precursors, tethered to the ER membrane by a trans-
membrane segment and have a stress-sensing portion 
that projects into the ER lumen. Under conditions of 
ER stress, ATF6 is transported from the ER to the Golgi 
apparatus, where it is cleaved by Golgi-resident pro-
teases, first by S1P (site 1 protease) and then in an intra-
membrane region by S2P (site 2 protease) to release the 
cytosolic DNA-binding portion, ATF6f (‘f ’ for fragment). 
From there, ATF6f moves to the nucleus to activate gene 
expression27 (FIG. 2). 

Box 1 | How is ER stress sensed?

The endoplasmic reticulum (ER) stress transducers inositol-requiring protein-1 (IRE1) and 
protein kinase RNA (PKR)-like ER kinase (PERK) are enzymes whose oligomerization-
induced activation is linked to perturbed protein folding in the ER. Both IRE1 and PERK 
contain experimentally interchangeable and evolutionarily related unfolded protein-
sensing domains that are located in the ER lumen. Three models for how these domains 
sense the unfolded protein load have been proposed. The direct recognition model 
proposes that unfolded proteins bind directly to the luminal domains of IRE1 and PERK 
(panel a). The recent crystal structure of the yeast Ire1 lumenal domain revealed that an 
Ire1 dimer forms  a deep, long groove, with dimensions that are consistent with the ability 
to bind an extended polypeptide6. Access to the groove was obstructed in the otherwise 
similar crystal structure of mammalian IRE1α7, but it is unclear how these differences 
reflect on the function of IRE1. The possibility of peptide binding by IRE1 (and PERK, the 
lumenal domain of which can easily fit into a homologous groove-containing dimeric 
structure) suggests that peptide binding drives oligomerization. An alternative, indirect 
recognition model posits that binding of the abundant ER chaperone immunoglobulin-
binding protein (BiP) locks IRE1 and PERK into the inactive state (panel b). Indeed, in the 
unstressed state, both proteins are in a complex that contains BiP. ER stress correlates 
with dissociation of the inhibited complex and the incorporation of PERK or IRE1 into 
higher order, active complexes. Furthermore, BiP overexpression markedly attenuates 
PERK and IRE1 activity and represses the unfolded protein response (UPR)31,85, whereas 
reducing BiP levels activates the UPR. The model in panel b, in which binding of BiP to the 
lumenal domains of IRE1 and PERK represses activation, is consistent with these 
observations. The indirect recognition model, however, does not readily explain how the 
high molar ratio of BiP to stress transducers can be reconciled with the sensitivity of the 
UPR to subtle changes in levels of BiP clients (the unfolded proteins). Also, BiP binding is 
not essential to IRE1 regulation6,86. A third, hybrid recognition model proposes that both 
BiP dissociation and peptide binding cause sensor activation (panel c). 
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The proteolytic machinery for regulated intra-
membrane proteolysis of ATF6 proteins is shared with 
the sterol response element binding proteins (SREBPs)28. 
In both cases, trafficking of the inactive precursor to 
the Golgi apparatus precedes the activating proteolytic 
steps. However, the initiating signal for the trafficking 
event is different for the two classes of proteins: release 
from sterol repression in the case of SREBPs, but an 
increase of unfolded proteins in the ER in the case of 
ATF6. This increase might involve direct or indirect 
(chaperone-mediated29) sensing of unfolded proteins 
by the lumenal domain of ATF6 proteins, as discussed 
above for IRE1 (BOX 1), which results in the trafficking 
of ATF6 from the ER to the Golgi.

The predicted structures of several other proteins 
suggest that they are ER-anchored transcription fac-
tors that are related to ATF6 (for example, LZIP (also 
known as luman or cyclic AMP-responsive element 
binding protein-3 (CREB3), OASIS (also known as 
CREB3-like-1) and Tisp40 (transcript induced in sper-
miogenesis-40)). One such protein, CREB-hepatocyte 
(CREBH), has recently been found to be activated by 
ER-stress-regulated proteolysis. However, CREBH 
does not activate genes that enhance the capacity of 
the secretory pathway but, rather, links ER stress in the 
liver to the secretion of serum proteins that are associ-
ated with inflammation (so-called acute-phase responsive 

proteins)30. These observations are an intri guing example 
of integration of the UPR with a range of physiological 
systems.

PERK and translational control

The third ER stress transducer, PERK, superficially 
resembles IRE1. Both are ER-localized type I transmem-
brane proteins with lumenal stress-sensing domains 
that are phylogenetically related, similar in structure 

and function, and experimentally interchangeable31. 
The cytoplasmic portion of PERK also contains a 
protein kinase domain, which undergoes activating 
trans-autophosphorylation by oligomerization in ER-
stressed cells; however, unlike IRE1, for which the only 
substrate is itself, PERK phosphorylates the α-subunit 
of eukaryotic translation initiation factor-2 (eIF2α) at 
Ser51. This phosphorylation inhibits the guanine nucleo-
tide exchange factor eIF2B, a pentameric complex that 
recycles eIF2 to its active GTP-bound form. Lower levels 
of active eIF2 result in lower levels of translation initi-
ation, globally reducing the load of newly synthesized 
proteins, many of which are destined to enter the already 
stressed ER lumen32 (FIG. 3).

In addition to decreasing global protein synthesis to 
reduce the ER load, PERK-mediated eIF2α phosphoryl-
ation also contributes to transcriptional activation in the 
UPR. Expression profiling in ER-stressed PERK knock-
out cells showed the defective induction of numerous 
mRNAs that are responsible for the normal UPR33. A 
similar defect in stress-induced gene expression was 
also observed in cells with a Ser51Ala mutation in eIF2α 
that prevents the regulatory phosphorylation event but 
does not otherwise affect eIF2 function34. Furthermore, 
most genes that are downregulated in PERK-knockout 
cells were induced by the directed activation of PERK 
(in an experimental system that is uncoupled from ER 
stress). Most importantly, the entire range of the PERK-
dependent gene expression programme required eIF2α 
phosphorylation as it was blocked by the Ser51Ala 
mutation35.

The link between eIF2α phosphorylation and activ-
ated gene expression is conserved in eukaryotes. In 
yeast, phosphorylation of eIF2α by Gcn2 (general con-
trol non-derepressible-2; a kinase activated by uncharged 

transfer RNAs) leads to translational upregulation of the 

Figure 2 | Signalling by ATF6. Activating transcription factor-6 (ATF6) and cyclic AMP response element binding protein 

hepatocyte (CREBH) are transmembrane proteins with a cytoplasmic portion that, when liberated from its transmembrane 

tether, can bind to DNA and activate target genes 27,30. In unstressed cells, ATF6 and CREBH reside in the endoplasmic 

reticulum (ER) membrane. ATF6 trafficking appears to be hindered by binding of the ER chaperone immunoglobulin-

binding protein (BiP) to its lumenal domain. ER stress disrupts BiP binding and ATF6 (and CREBH) are delivered to the Golgi 

apparatus29. The details of this vesicular transport event remain unknown. In the Golgi apparatus, these proteins are 

subject to consecutive cleavage, first by the lumenal site 1 protease (S1P) and then the intra-membrane site 2 protease 

(S2P), which liberates the cytosolic effector portions of the proteins from the membrane and allows their import into the 

nucleus28. ATF6 probably activates a subset of UPR target genes, although these remain to be characterized, whereas 

CREBH activates acute-phase response genes that encode secreted proteins involved in inflammation30.
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transcription factor Gcn4, which is a key regulator 
of the cellular response to amino-acid deprivation36. 
The 5′-untranslated region of GCN4 contains short, 
inhibitory upstream open reading frames (uORFs) that 
prevent translation of the downstream GCN4-encoding 
ORF in unstressed cells. Conditions that limit eIF2 
activity (due to eIF2α phosphorylation) lead to ribo-
somes skipping the inhibitory uORFs so that the GCN4 
ORF can be translated. This feature is conserved in 
mammalian ATF4 (the metazoan homologue of Gcn4), 
a transcription factor that is translationally induced by 
phosphorylation of eIF2α (REFS 37,38).

At high levels, eIF2α phosphorylation can also activate 
nuclear factor κB (NFκB), but there is controversy about 
the mechanism(s) involved. In one study, conditions that 
were associated with eIF2α phosphorylation led to the 
physical disruption of an inhibitory complex that con-
tains NFκB (REF. 39), whereas other work indicates that 
the translational repression that is mediated by eIF2α 
phosphorylation causes decreased levels of the repressor 
of NFκB (REF. 40). Regardless of mechanism, the contri-
bution of NFκB to ATF4-independent, PERK-dependent 
UPR target gene expression remains to be defined, and 
other effectors of PERK signalling to the genome by 

Figure 3 | Signalling by PERK to the translational machinery. In response to endoplasmic reticulum (ER) stress, protein 

kinase RNA (PKR)-like ER kinase (PERK), similar to inositol-requiring protein-1 (IRE1), oligomerizes in the plane of the 

membrane and is activated by trans-autophosphorylation of its activation loop31. Extensive further phosphorylation of 

the large kinase insert loop facilitates substrate recruitment98. Phosphorylation of a single known substrate, the α subunit 

of eukaryotic translation initiation factor-2 (eIF2) on Ser51, inhibits the pentameric guanine nucleotide exchange factor 

eIF2B from recycling eIF2 to its active GTP-bound form. The resulting reduced activities of eIF2B and the eIF2 complex 

account for all of the important consequences of PERK activity. Because other eIF2 kinases (PKR, haem-regulated inhibitor 

kinase (HRI) and general control non-derepressible-2 (GCN2)) can activate this pathway independently of ER stress, this 

portion of the unfolded protein response (UPR) is termed the integrated stress response (ISR)33,52. Lower global protein 

synthesis reduces ER unfolded protein load but also affects gene transcription. For example, translation of the activating 

transcription factor-4 (ATF4) is increased under conditions of limiting eIF2, whereas nuclear factor κB (NFκB) is activated 

post-translationally. The ISR activates genes that encode amino-acid transporters and genes that protect against oxidative 

stress, and it contributes to the transcriptional activation of XBP1 (REF. 52). The transcription factor CHOP (C/EBP-

homologous protein) is also activated transcriptionally by ATF4 and its target genes include GADD34 (growth arrest and 

DNA damage-inducible protein-34), a regulatory subunit of phosphatase PP1 that dephosphorylates eIF2α and terminates 

signalling in the ISR77, and ER oxidase-1 (ERO1), which is required for disulphide bond formation in protein folding. 

A constitutive phosphatase CReP (constitutive repressor of eIF2α phosphorylation) assists GADD34 in this task41.
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eIF2α phosphorylation need to be identified. Importantly, 
several other signalling pathways unrelated to ER stress 
(triggered by amino-acid starvation, double-stranded 
RNA accumulation or haem depletion) also converge 
on eIF2α phosphorylation and activate a common set of 
target genes. Because of this integrative feature, signalling 
downstream of phosphorylated eIF2α was termed the 
integrated stress response (ISR)33.

There is little doubt that cells must tightly regulate 
the level of phosphorylated eIF2α to survive. PERK 
activation by ER stress is rapidly reversible and, within 
minutes of restoring ER homeostasis, activated PERK is 
dephosphorylated31,41. The regulatory mechanisms and 
the phosphatase(s) involved remain unknown, but it 
has been established that phosphorylated eIF2α is also 
subject to negative regulation. Two components of this 
process have been identified by somatic-cell genetic 
screens for genes that, when overexpressed, block the 
activation of a PERK-dependent reporter. The two iden-
tified genes, GADD34 (growth arrest and DNA-damage-
inducible protein-34) and CReP (constitutive repressor of 
eIF2a phosphorylation), encode the substrate targeting 
subunits of two phosphatase complexes that indepen-
dently dephosphorylate eIF2α (REFS 41–43). CReP is 
constitu tively expressed and contributes to baseline 
eIF2α dephosphorylation41, whereas GADD34 is induced 
as part of the gene expression programme activated by 
eIF2α phosphorylation and serves in a negative feedback 
loop that operates within it44–46.

Cross-talk between the arms of the UPR 

Whereas IRE1, PERK and ATF6 activation proceeds 
independently in ER-stressed cells, the three arms of the 
UPR communicate with each other extensively. Little is 
known about the role of ATF6 family members in regulat-
ing UPR-mediated gene expression and the phenotypes 
of loss-of-function mutations in mammalian ATF6 genes 
have not been described. However, experiments in C. ele-
gans indicate that there is functional redundancy between 
the IRE1–XBP1 arm and the ATF6 arm of the UPR. This 
is inferred from the observation that mutations in either 
arm are relatively well tolerated, but compromising both 
arms blocks worm development21. It is unclear, however, if 
this genetic complementation reflects the redundant acti-
vation of a common set of genes or functional redundancy 
between distinct sets of ATF6 and XBP1 target genes.

PERK and eIF2α phosphorylation have an important 
role in protecting cells against the consequences of ER 
stress34,47. However, it is currently impossible to separate 
the effects of eIF2α phosphorylation on protein synthesis 
from its effects on activated gene expression; thus, we are 
unable to gauge the relative contribution of the two com-
ponents to homeostasis during ER stress. Furthermore, the 
transcriptional effects of the three known arms of the UPR 
overlap significantly, which is achieved in part through 
mutual positive reinforcement. For example, XBP1 is 
transcriptionally activated by ATF6 (REF. 12) and PERK 
signalling13, the latter of which might account for the broad 
defect in the UPR in cells that lack PERK. Nonetheless, 
there appear to be important differences in the direct 
targets of the transcriptional activators of the UPR48.

Yeast Gcn4, similar to its metazoan homologue ATF4, 
also collaborates with Hac1 in the UPR49 and is the main 
mediator of eIF2α-phosphorylation-dependent gene 
expression in yeast. By contrast, expression profiling of 
mammalian cells shows that approximately half of the 
PERK-dependent UPR target genes are ATF4 independ-
ent33, which points to the existence of other PERK effec-
tors downstream of phosphorylated eIF2α. Attempts to 
identify other effectors have so far been unsuccessful.

Remodelling of the ER by stress

The size of the ER correlates with the unfolded protein 
load across different cell types and different physiological 
states. Several lines of evidence suggest that the UPR con-
tributes to the coupling of ER expansion to physiological 
demand. The first hint was the surprising finding that 
sensors of the UPR respond to an imbalance between 
unfolded proteins and chaperones in the ER lumen, yet the 
UPR also activates processes such as amino acid import 
and tRNA charging that cannot be understood merely 
in terms of restoring the buffering of unfolded proteins 
by chaperones50,51. Amino-acid transporters, for example, 
are encoded by UPR target genes that are activated by 
PERK-mediated eIF2α phosphorylation. Their activation 
might further threaten the balance of chaperones and 
unfolded proteins because they promote sustained pro-
tein synthesis, which loads the ER with unfolded proteins. 
These findings indicate that the UPR broadly functions to 
increase the capacity of a cell to carry out protein secretion 
rather than narrowly defending cells against ER stress. It is 
therefore likely that the UPR protects cells from ER stress 
and increases secretory capacity by carefully attending 
to the sequence in which various mechanisms that 
remodel the ER are deployed.

Reprogramming translation and translocation. A reduc-
tion in the global rates of translation initiation due to 
PERK-mediated eIF2α phosphorylation is one of the earli-
est events in ER stress. In addition to reducing the load on 
the ER, eIF2α phosphorylation liberates ribosomes and 
translation factors from mRNA, and the latter accumulate 
as free subunits52. This resetting of the translational pro-
gramme is predicted to help newly synthesized mRNAs 
that are transcribed by the UPR-induced gene-expression 
programme to compete for limiting translation factors.

The reprogramming of ER translation is also pro-
posed to be mediated, in part, by a recently identified 
process whereby mRNAs that encode secreted proteins 
are selectively degraded in ER-stressed cells26. This 
pheno menon was discovered by comparing the profiles 
of mRNAs expressed in wild-type, IRE1-knockdown or 
XBP1-knockdown cells that were either unstressed or ER 
stressed. Numerous mRNAs that encode secreted proteins 
were degraded in both wild-type and XBP1-knockdown 
ER-stressed cells, but not in cells lacking IRE1. Further 
experiments showed that degradation occurs in a subset 
of mRNAs that must be physically associated with the ER 
membranes. This selective degradation of mRNAs that 
encode secreted proteins is predicted to reduce ER load 
and liberate ribosomes and translation factors that serve 
in reprogramming the repertoire of the ER.
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The induction of chaperone-encoding genes by 
the IRE1, ATF6 and PERK pathways seems to work at 
cross-purposes with the repression of mRNA translation. 
However, GADD34-mediated eIF2α dephosphorylation, 
which is deployed as part of the UPR gene-expression 
programme, coordinates the recovery of eIF2 activity 
(and translation initiation) with the transcriptional 
induction of UPR target genes, promoting the trans-
lation of their mRNAs43,46. It is predicted that this chain 
of events transiently reprogrammes the ER away from its 
normal load of secretory proteins to the synthesis of UPR 
targets, which enhance the capacity of the entire secretory 
apparatus to handle proteins.

A conceptually similar and complementary process 
might also occur at the translocon, through which nascent 
polypeptides enter the ER. Translocation of nascent 
chains into the ER lumen can proceed without partici-
pation of lumenal chaperones, but there is evidence that 
chaperones can help53. ER stress, which challenges the 
chaperone reserve, might therefore render translocation 
less efficient. However, this impediment to transloca-
tion affects different proteins to different degrees. 

Proteins with weaker signal peptides, such as the prion 
precursor protein, are preferentially excluded from the 
ER54. These findings led Hegde and colleagues to suggest 
that signal peptide strength is under negative selection 
to ensure that only selected proteins (for example, the 
ER chaperone immunoglobulin-binding protein (BiP)) 
are translocated into the ER under stressful conditions. 
This process would protect the ER and the organism 
by reducing the load of misfolding-prone proteins that 
enter the stressed organelle and, by clearing the way for 
newly-synthesized UPR target proteins, reprogramme 
the ER to meet changed needs.

Lipids and the UPR. Transcriptional and translational 
reprogramming enhances the synthesis of proteins that 
function in the ER and elsewhere in the secretory path-
way. However, the UPR also contributes to an expansion 
of the lipid component of membranes in cells that are 
burdened with a heavy secretory load. In yeast, many of 
the genes that encode the key rate-limiting enzymes in 
lipid biogenesis are upregulated following UPR induc-
tion50. IRE1 mutant yeast are dependent on exogenous 
sources of inositol to survive, which reflects a role for 
the UPR in maintaining the biosynthesis of this essential 
building block of phospholipids55. Furthermore, the roles 
of IRE1 and XBP1 in endomembrane proliferation and 
phospholipid biosynthesis are conserved in mammals. 
This probably explains the essential role of XBP1 in the 
development of several types of secretory cells56,57, and 
the observation that deregulated expression of XBP1 
can single-handedly promote phospholipid biosynthesis 
and membrane expansion in mammalian cells58,59 (FIG. 4). 
Similarly, in yeast cells, expression of the spliced version 
of HAC1 mRNA drives expansion of the ER60. It remains 
unclear, however, if signalling in the UPR is sufficient to 
drive the remarkable expansion of the ER that is observed 
in professional secretory cells.

Phospholipid depletion activates the UPR55,61. It is 
not known whether this reflects an indirect perturba-
tion of the protein-folding environment in the ER lumen 
or whether IRE1 (or PERK or ATF6) can directly sense 
changes in the lipid composition of the ER bilayer. 
Interestingly, the SREBPs, which regulate the main path-
way for sensing lipid sufficiency in animal cells, are also 
controlled through an ER connection and share compo-
nents of their activating machinery with the UPR28. 
However, there is little evidence for shared targets or for 
overlap between the circumstances under which the two 
pathways are activated. For example, deregulated XBP1 
does not increase cholesterol stores59, which is consistent 
with the idea that the UPR is designed to increase the 
production of sterol-poor ER membranes.

The UPR and the sterol-activated signalling pathways 
might oppose each other: cholesterol accumulation in 
ER membranes promotes ER stress62 and activates the 
UPR63, whereas PERK-mediated eIF2α phosphorylation 
interferes with SREBP activation64 and ATF6 has been 
reported to antagonize SREBP2 (REF. 65). The functional 
significance of these relationships has not been explored 
in detail. It has also been reported that obesity increases 
the levels of ER stress in adipocytes and liver cells by an 

Figure 4 | ER stress and lipid metabolism. Cholesterol accumulation in endoplasmic 

reticulum (ER) membranes can cause ER stress, as can obesity, a metabolic state that is 

associated with the accumulation of cellular lipids. ER stress activates inositol-requiring 

protein-1 (IRE1), which leads to X-box binding protein-1 (XBP1)-dependent 

enhancement of phospholipid biosynthesis59, which in turn increases membrane 

biogenesis. This feature of the unfolded protein response is conserved in all eukaryotes. 

XBP1 activity thereby reduces the free cholesterol to phospholipid ratio — a high ratio 

can compromise ER function62 and induce ER stress63. Protein kinase RNA (PKR)-like ER 

kinase (PERK)-mediated phosphorylation of eukaryotic translation initiation factor-2α 

(eIF2α) antagonizes sterol-regulated enhancer binding protein (SREBP) activation to 

decrease cholesterol synthesis, although the mechanisms remain incompletely 

understood64. Increased adipose stores can also promote ER stress in certain key insulin-

responsive tissues, such as fat and the livers of obese mice. The consequent enhanced 

activity of IRE1 is linked to insulin resistance through activation of the Jun N-terminal 

kinase (JNK), which phosphorylates insulin receptor substrate-1 (IRS1)66 to downregulate 

insulin signalling. Finally, eIF2α phosphorylation inhibits obesity in mice by unknown 

mechanisms99.
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unknown mechanism66. The physiological consequences 
are interesting because in mammalian cells IRE1 activates 
JNK, which in turn suppresses signalling downstream of 
the insulin receptor. The potential physiological signifi-
cance of this molecular mechanism is supported by the 
observation that insulin signalling in obese mice is mark-
edly improved by small molecules that promote protein 
folding (chemical chaperones) and, thus, ameliorate ER 
stress67. These provocative studies implicate ER stress in 
the development of obesity-linked insulin resistance and 
type II diabetes.

Removal of misfolded proteins and damaged ER. 
Targets of the UPR include key genes that are involved in 
ER-associated protein degradation (ERAD)50. ERAD medi-
ates the retro-translocation of unfolded proteins from 
the ER lumen into the cytosol for degradation by the 
proteasome. Therefore, ERAD complements other UPR 
targets — such as chaperones and protein-modifying 
enzymes (the upregulation of which facilitates protein 
folding) — by removing misfolded proteins from the ER. 
Proteins that enter the ERAD pathway, however, must 
traverse the membrane in reverse and, presumably, do 
so as an unfolded chain through a protein translocation 
channel in the membrane.

Severely misfolded proteins and protein aggregates 
might be difficult to unravel and degrade by this mecha-
nism. However, cells are endowed with an alternative 
mechanism for degrading proteins — autophagy. In 

this process, organelles can be degraded regardless of 
their size or the folding state of their constituent pro-
teins. Many of the components that mediate autophagy 
have recently been identified as UPR target genes and 
are important for cells to survive severe ER stress60,68; 
therefore, as the cell produces more ER to handle an 
increased protein-folding load, it concomitantly pre-
pares to degrade the organelle and the damaged proteins 
within it.

Interestingly, during UPR-induced autophagy, ER 
membranes are selectively sequestered and tightly pack-
aged into autophagosomes. For this reason, the process 
has been named ER-phagy (‘ER eating’), which represents 
a novel, organelle-selective branch of autophagy60. In 
contrast to other types of autophagy, such as starvation-
induced autophagy, the autophagosomes that accumu-
late in UPR-induced yeast cells do not readily fuse with 
the vacuole until the stress is abolished, indicating that the 
sequestration of damaged ER is more important than 
its ultimate degradation. The mechanisms described 
above aim to reduce the level of ER stress. However, 
when the stress is overwhelming, cell-death pathways 
are activated.

Survival and death of ER-stressed cells

Given the toxic potential of unfolded and misfolded 
proteins that accumulate in ER-stressed cells, it comes as 
no surprise that a perturbed and overloaded ER-folding 
environment is associated with enhanced cell death. 
However, the molecular mechanisms that are involved 
in the death of ER-stressed cells remain poorly under-
stood. Calcium from the ER might be involved in the 
activation of cytoplasmic proteases that contribute to 
cell death69, but it is unknown if and how ER stress 
promotes such a calcium leak. Similarly, ER stress has 
been implicated in the activation of various death effec-
tors such as BAK and BAX, which signal through the 
mitochondria70, or caspase-12, which is activated in 
the cytoplasm23,71. However, the link between pertur-
bation in protein folding in the ER and the activation 
of these death pathways remains poorly understood 
(FIG. 5). Furthermore, the available evidence suggests 
that the same pathways are activated by lethal ER stress 
and by surmountable ER stress (which does not lead to 
death). It has been suggested that survival in the face 
of lower levels of ER stress is facilitated by the intrinsic 
instability of UPR-induced cell-death mediators such as 
CHOP (C/EBP-homologous protein) and GADD34 (see 
below). According to this model, the level of these pro-
teins exceeds the death threshold only after prolonged 
and severe ER stress72.

The complexity of the relationship between the UPR 
and cell survival and cell death is illustrated by consider-
ing the role of eIF2α phosphorylation. Complete loss of 
PERK-mediated eIF2α phosphorylation markedly sensi-
tizes cells to death from ER stress33,34,73. However, not all of 
the effectors of this arm of the UPR contribute to protec-
tion; a notable exception is the transcription factor CHOP, 
which is itself transcriptionally induced by eIF2α phos-
phorylation52. Deregulated CHOP expression promotes 
cell death74, whereas CHOP deletion protects against 

Figure 5 | ER stress and cell death. Cell death by endoplasmic reticulum (ER) stress 

occurs by a poorly understood mechanism. Altered calcium handling might be 

implicated in the translocation of the death effectors BAX and BAK from the ER to the 

mitochondria100 and, in mice, caspase-12 activation (perhaps through tumour necrosis 

factor receptor (TNFR)-associated factor-2 (TRAF2)23 is implicated in cell death71. Inositol-

requiring protein-1 (IRE1)-mediated activation of Jun N-terminal kinase (JNK) might 

contribute to cell death by phosphorylating and inactivating the anti-apoptotic 

regulator BCL-2. The formation of a complex with the pro-death proteins BAX and BAK 

might assist in IRE1 activation24. Protein kinase RNA (PKR)-like ER kinase (PERK)-

mediated phosphorylation of eukaryotic translation initiation factor-2α (eIF2α) can 

contribute to cell death by inhibiting the synthesis of pro-survival proteins; one of the 

downstream targets of PERK, the transcription factor CHOP, may repress BCL-2 

expression74. In most circumstances, however, PERK signalling is protective against cell 

death and the survival benefit of CHOP knockout is best explained in terms of its role in a 

negative feedback loop that operates in the unfolded protein response to promote eIF2α 

dephosphorylation and recovery of protein synthesis. ATF4, activating transcription 

factor-4; GADD34, growth arrest and DNA-damage-inducible protein-34. 
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the death of ER-stressed cells75,76. These observations 
indicate that CHOP evolved to link insurmountable 
levels of ER stress to the cell-death machinery, and suggest 
that the fitness of complex metazoans (in which CHOP 
first evolved) is improved by the death of cells that are 
damaged by ER stress because the dead cells are replaced 
through regenerative programmes that are developed 
in long-lived higher eukaryotes75. This explan ation is 
favoured by evidence that links CHOP to direct effec-
tors of cell death; for example, through repression of 
BCL-2 (REF. 74).

However, alternative explanations for increased 
survival of ER-stressed CHOP–/– cells have recently 
emerged. For example, CHOP activates GADD34, and 
reduced levels of GADD34 protein in CHOP–/– cells 
correlate with sustained elevation of phosphorylated 
eIF2α, sustained repression of translation, lower levels 
of unfolded ER proteins and, consequently, lower levels of 
ER stress. In keeping with this protective mechanism, 
GADD34 deletion also protects cells against death 
caused by pharmacological agents that perturb protein 
folding in the ER77. Therefore, the CHOP-dependent 
GADD34-mediated negative feedback on levels of 
phosphorylated eIF2α can, in some circumstances, be 
maladaptive because it encourages excessive recovery of 
the ER load in stressed cells.

Further evidence that this example of failed homeo-
stasis arises from inappropriately low levels of phos-
phorylated eIF2α is provided by an experiment in 
chemical genetics. A search for compounds that protect 
cells against death by exposure to tunicamycin led to salu-
brinal, a compound that was found to attenuate eIF2α 
dephosphorylation and promote higher steady-state 
levels of phosphorylated eIF2α (REF. 78). Furthermore, pre-
emptive phosphorylation of eIF2α (REF. 35) and genetic 
manipulation to reduce expression of eIF2 (therefore 
mimicking the effects of its phosphorylation) protected 
cells against subsequent exposure to ER stress79.

These observations are based on experiments using 
pharmacological agents that severely perturb the folding 
environment in the ER, but the threshold for activation 
of CHOP (and GADD34) might also be set to be inap-
propriately low in other, more relevant circumstances. 
For example, CHOP deletion protects dopaminergic 
neurons from the effects of toxins in a model of 
Parkinson’s disease that is associated with ER stress80, 
and it also protects insulin-producing β-cells from mis-
folded insulin in a model of diabetes mellitus76. These 
examples probably report only one side of a delicate 
balance; in other circumstances, the GADD34 feedback 
loop of eIF2α dephosphorylation and recovery of protein 
synthesis contributes to the survival of cells that are 
exposed to agents that induce high levels of PERK activa-
tion46. Also, in viral infection, elevated eIF2α phospho-
rylation probably contributes to organismal survival by 
promoting apoptosis81.

The rare human disease of childhood ataxia with 
cere bral hypomyelination presents a particularly 
interesting example of the potential adverse affects of 
excessive eIF2α phosphorylation. The known disease-
associated mutations mimic the effects of elevated 
levels of phosphorylated eIF2α by reducing the activity 
of eIF2B, the guanine nucleotide exchange factor that 
activates the eIF2 complex82. It is tempting to speculate 
that the character istic episodes of brain damage that 
are observed in this disease reflect the consequences of 
minor perturbations that promote ER stress and eIF2α 
phosphorylation to levels that are easily tolerated by 
normal individuals but not by patients with the disease. 
The need to regulate levels of phosphorylated eIF2α 
within narrow bounds has important implications for 
the possibility of targeting the translational arm of the 
UPR for therapeutic benefit (BOX 2). 

Conclusions and future directions

Despite the advances made in understanding the UPR 
in recent years, important unanswered questions remain. 
The structural basis for recognition of the upstream 
stress signal by the ER stress transducers has only begun 
to be unravelled and we have only a limited understand-
ing of the steps that are involved in activation of IRE1, 
PERK and ATF6 effector functions. Our understanding 
of the quantitative aspects of gene activation in the UPR 
is similarly rudimentary and we have only vague ideas 
of how the UPR interfaces with death and differentiation 
decisions or how it connects to parallel stress pathways 
such as autophagy. Despite these limitations, we can 
begin to consider the implications of manipulating 
signalling in the UPR. This is a worthwhile endeavour 
because the upstream signalling components of both the 
IRE1 and PERK arms of the pathway are protein kinases; 
therefore, drugs might be found that can target them 
selectively.

The UPR protects cells against normal and unusual 
levels of ER stress by enhancing the capacity of the secre-
tory apparatus and by reducing ER load. Different cells 
are predicted to have different levels of sensitivity to ER 
stress and, thus, will exhibit different levels of tolerance 
to inhibition of PERK or IRE1. Cancer cells might be 

Box 2 | Cancer and the unfolded protein response

Malignant transformation and the tumour environment promote endoplasmic 
reticulum (ER) stress. Tumour ischaemia is one proposed mechanism because protein 
folding in the ER requires ATP and is sensitive to reduced intracellular glucose87. The 
high mutation load in cancer might also contribute to ER stress by affecting protein 
folding, and tumour survival is predicted to depend on signalling pathways that 
maintain chaperone levels to buffer these genetic defects88.

The unfolded protein response (UPR) is active in various human tumours87. Hypoxia, a 
common occurrence in solid tumours, is a potent activator of protein kinase RNA (PKR)-
like ER kinase (PERK)89,90 and its downstream target, activating transcription factor-4 
(ATF4)91. PERK activation was found in transplantable tumours in nude mice92 and 
inositol-requiring protein-1 (IRE1) activity was documented in a human sarcoma tumour 
xenograft that had been engineered to express an X-box binding protein-1 (XBP1) 
splicing reporter93.

Several experiments document the contribution of the UPR to tumour survival. 
Human fibrosarcoma cells with partial knockdown of the ER chaperone 
immunoglobulin-binding protein (BiP) are impaired in their ability to grow as tumours in 
nude mice94, whereas PERK knockout compromises the ability of Ras-transformed 
mouse fibroblasts to grow as tumours in nude mice92,95. Similarly, knockdown of XBP1 
compromises the growth of transplantable tumours in nude mice96. Together, these 
observations suggest the potential utility of interfering with the UPR as a means of 
treating cancer.

R E V I E W S

NATURE REVIEWS | MOLECULAR CELL BIOLOGY  VOLUME 8 | JULY 2007 | 527

© 2007 Nature Publishing Group 

 



especially sensitive to such manipulation (BOX 2), but the 
width of the therapeutic window between hypersensitive 
cancer cells and the susceptible, relevant normal tissues 
remains unknown.

Various human illnesses are caused by mutations that 
reduce the expression of essential membrane or secreted 
proteins below a certain disease threshold. Despite the 
fact that many such mutations have only subtle effects 
on folding and can be tolerated in functional proteins, 
the mutations are nonetheless sufficiently severe to cause 
retention and degradation of the mutant protein in the ER. 
The UPR directly regulates the expression of the chaper-
ones and degradation machinery that constitute the ER 
quality control system that retains attempts to fold but, 
ultimately, destroys most such mutant proteins83. The 
health of patients with such diseases would be served 
by loosening the stringency of ER quality control, a goal 

that might be attained by inhibiting portions of the UPR. 
In other circumstances, a mutation might cause a protein 
to misfold into a dangerous conformation and patient 
health would then be served by enhancing retention in 
the ER and degradation of the mutated protein84. Better 
tools are needed to predict how tweaking the UPR might 
affect the handling of mutant proteins in a variety of 
circumstances.

Beyond these relatively well-defined goals, we also 
need to assess critically the role of ER stress in myriad 
other pathophysiological conditions that are not associ-
ated with the expression of any known specific mutant 
protein. In that context, special attention needs to be paid 
to the intersection between the UPR and other signalling 
pathways, even if we still lack an intuitive understanding 
of how these pathways are linked to cellular adaptation 
to the unfolded protein load in the ER. 
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