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Several approaches are currently being taken to elucidate the mechanisms
and the molecular components responsible for protein targeting to
and translocation across the membrane of the endoplasmic reticulum.
Two experimental systems dominate the field: a biochemical system
derived from mammalian exocrine pancreas, and a combined genetic
and biochemical system employing the yeast, Saccharomyces cerevisiae.
Results obtained in each of these systems have contributed novel, mostly
non-overlapping information. Recently, much effort in the field has been
dedicated to identifying membrane proteins that comprise the translocon.
Membrane proteins involved in translocation have been identified both
in the mammalian system, using a combination of crosslinking and
reconstitution approaches, and in S. cerevisiae, by selecting for mutants
in the translocation pathway. None of the membrane proteins isolated,
however, appears to be homologous between the two experimental
systems. In the case of the signal recognition particle, the two systems
have converged, which has led to a better understanding of how proteins
are targeted to the endoplasmic reticulum membrane.
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Introduction

In eukaryotic cells, the first step in the biogenesis of pro-
teins destined to be secreted and lumenal proteins that
are residents of the secretory pathway is the targeting and
translocation of these proteins across the membrane of
the endoplasmic reticulum (ER). The ER is also the site
for the integration of membrane proteins that comprise
the plasma membrane and other intracellular membranes
of the secretory and endocytic pathways. These proteins
are initially synthesized on ribosomes in the cytosol of the
cell and are selectively targeted to the ER. Targeting to the
ER is specified by a signal sequence contained within the
polypeptide chain, usually found at the amino terminus
of the protein.

In higher eukaryotes, the vast majority of proteins are tar-
geted to the ER in a obligatory cotranslational, ribosome-
dependent manner. A cytoplasmic ribonucleoprotein,
termed signal recognition particle (SRP), binds to the sig-
nal sequence as it emerges from the ribosome causing an
arrest or pause in the elongation of the nascent polypep-
tide. This pause may extend the time in which the nascent
chain can be productively targeted to the ER membrane.
Targeting of the ribosome—nascent chain—SRP complex
to the ER membrane is mediated by the specific interac-
tion of SRP with the ER membrane heterodimeric pro-

tein complex, the SRP receptor (SR, comprised SRa and
SRP subunits). Once SRP interacts with its receptor, the
signal sequence dissociates from SRP and elongation ar-
rest is released. Upon release from SRP, the nascent chain
inserts into and becomes tightly associated with the ER
membrane via interactions with components of the ma-
chinery that mediate the translocation of the polypeptide
across the membrane, collectively referred to as the trans-
locon.

Following nascent chain insertion, translocation of the
nascent chain proceeds through a protein conducting
channel across the ER membrane and into the lumen.
Interaction of nascent proteins with BiP, a member of
the heat-shock protein 70 family that resides in the lu-
men of the ER, facilitates the native folding and assem-
bly of proteins. During co-translational translocation of
nascent polypeptides, enzymes present in the membrane
and lumen of the ER modify the polypeptide chain. ER-
specific signal sequences are cleaved by signal peptidase,
oligosaccharides are covalently attached to the nascent
chain by oligosaccharyl transferase and disulfide iso-
merase catalyzes disulfide bond formation. These mod-
ifications to the polypeptide chain are important for the
proper folding of the protein and the enzymes that cat-
alyze these modifications may possibly be involved in the
process of nascent chain translocation.

Abbreviations
ER—endoplasmic reticulum; SR—signal recognition particle receptor; SRP—signal recognition particle;
SSR—signal sequence receptor; TRAM—translocating-chain-associating membrane protein.
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This review encompasses the recent advances made in
understanding the mechanisms and components respon-
sible for the specific targeting and translocation of pro-
teins across the ER membrane.

Signal recognition, targeting and insertion of
pre-proteins into the ER membrane

Mammalian SRP is composed of six polypeptides (72,
68, 54, 19, 14 and 9kD) and a 7SL RNA molecule. SRP
mediates three distinct functional activities: signal recog-
nition, elongation arrest and translocation promotion [1].
These activities are contained within three separate struc-
tural domains of the particle. Elongation arrest requires
the presence of the 9 and 14kD proteins, which form
a heterodimer that binds to the Alu domain of 7SL
RNA [2¢]. The 68 and 72kD proteins also form a het-
erodimeric RNA-binding complex and are necessary for
the interaction of SRP with the ER membrane and the SR
[2¢]. Investigation of the mechanism of assembly of SRP
in vitro has shown that the binding of the 9/14kD and
the 68/72 kD heterodimers to 7SL RNA is non-cooperative
in the absence of the 54 and 19 kD subunits of SRP [3¢].
The 19kD protein binds to 7SL RNA and is required for
the binding of the 54 kD subunit (SRP54) to SRP (4,5%].
SRP54 probably binds directly to a region in 7SL RNA that
has been identified as a phylogenetically conserved motif
characteristic of SRP RNAs [6]. Photocrosslinking stud-
ies have demonstrated that SRP54 specifically binds to
the signal sequence of secretory proteins and signal-an-
chor sequences in nascent integral membrane proteins
[7,89°].

Insight into the mechanism of signal sequence recog
nition was gained when the gene encoding SRP54 was
cloned [10,11]. From the deduced amino acid sequence,
SRP54 is predicted to contain three domains: an amino-
terminal domain of unknown function, followed by
a GTPase domain, which contains the consensus se-
quence motifs for GTP binding. These two domains
will be collectively referred to as the G-domain. SRP54
also contains a methionine-rich domain, termed the M-
domain. The M-domain is proposed to contain a signal-
sequence-binding pocket lined with methionine residues
that accommodates diverse signal sequences because
of their flexibility [11]. Limited proteolysis confirmed
the domain boundary between the G- and M-domains
[12]. Photocrosslinking studies demonstrated that the
signal sequence binding site of SRP54 is contained in
the M-domain which, in addition, contains an RNA-bind-
ing site [12-14]. As a free protein, SRP54 can bind signal
sequences [15¢]. Biochemical dissection of free SRP54
demonstrated that the M-domain of SRP54 alone is suffi-
cient to recognize and bind signal sequences. Upon cell
fractionation, all SRP54 is found complexed in SRP (D
Zopf and PW, unpublished data). Thus, it is unlikely that
free SRP54 plays any role in targeting or translocation.

Experimental evidence suggests that the M- and G-
domains of SRP54 physically interact [15¢¢]. Alkylation

of the G-domain inhibits binding of the signal sequence
to the M-domain, which can be reversed by proteolytic
removal of the alkylated G-domain. These findings also
suggest that, although the GTPase domain does not bind
signal sequences, it may modulate the binding of signal
sequences to the M-domain. This prediction is consistent
with the fact that GTP is required in the targeting and
translocation pathway.

To date, three components involved in protein translo-
cation, SRP54, SRa and SR, are members of the GT-
Pase superfamily and have been shown to bind GTP
([10,11,16,17]; J Miller, P Walter, unpublished data).
SRP54 and SRa form a unique subfamily of GTPases.
The sequence similarities between SRP54 and SRa sug-
gest that these proteins were derived from a common
ancestor [10,11]. SRP is not closely related to other GT-
Pases by sequence and is also unique among GTPases as
it contains an amino-terminal transmembrane domain (J
Miller, P Walter, unpublished data).

Following the targeting of the ribosome-nascent chain—
SRP complex to the ER membrane, the signal sequence
dissociates from SRP, and the nascent chain inserts into
and becomes tightly associated with the ER membrane
via interactions with components of the translocon [18].
In this step, GTP is required for the release of the
nascent chain from SRP {19]. The non-hydrolyzable ana-
log, Gpp(NH)p, promotes the release of the nascent
chain from SRP and its insertion into the ER mem-
brane, but prevents the subsequent release of SRP from
the SR [20+¢]. Thus, GTP hydrolysis is required for re-
cycling of both SRP and SR for subsequent rounds of
targeting and nascent chain insertion. Mutations in the
GTP-binding consensus sequences of SRa reduce the ef-
ficiency of GTP-dependent nascent chain insertion and
prevent the formation of a stable SRP-SR complex in
the presence of Gpp(NH)p [21¢]. These observations
indicate that the GTPase activity of SRa plays a role in
targeting and translocation. The specific contribution of
each of the three GTPases, SRP54, SRa and SR, in tar-
geting and nascent chain insertion in the ER membrane,
however, remains to be determined. In general, GTPases
function to assemble macromolecular complexes in tem-
poral succession. Thus, one might envision that these GT-
Pases function to assemble accurately components of the
translocon, so that the signal sequence can be specifically
inserted into the ER membrane [22¢].

From in vitro studies, the mammalian system has re-
vealed great insight into the mechanism of SRP-depen-
dent signal recognition and targeting. It is very likely,
however, that other pathways for ER targeting exist. In
S. cerevisiae, post-translational ER targeting and trans-
location have been observed both in vitro and in vivo
[23-25]. In veast, other cytosolic factors, the hsp 70s, as-
sociate with pre-proteins and facilitate post-translational
translocation [26,27]. The presence of an SRP-indepen-
dent post-translational targeting and translocation path-
way has been demonstrated in vitro for a small set of
substrates in the mammalian systemn as well (28].

The genes encoding the S. cerevisiae homologs of SRP54
and SRa were recently cloned [29,30,31¢¢]. Evaluation of
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the in vivo role of the SRP-dependent targeting pathway
was facilitated by the molecular genetics techniques avail-
able in S. cerevisiae. Deletion of the genes encoding ei-
ther SRP54 or SRa, or both, results in viable, but poorly
growing cells, suggesting that the SRP-dependent path-
way can be partially by-passed in vivo [31+¢32°*]. Upon
depletion of SRP54 or SRa in yeast cells, precursors to
both secretory and membrane proteins accumulate in
the cytosol [31¢%,32¢¢,33¢]. The degree to which differ-
ent proteins are affected, however, varies greatly. The
translocation of carboxypeptidase Y, a vacuolar pro-
tein, for example, is unaffected in SRP-depleted cells,
whereas the translocation of Kar2p, a lumenal ER protein,
and dipeptidyl aminopeptidase B, a vacuolar membrane
protein, are severely diminished. Cytosolic precursor to
Kar2p accumulates in SRP-depleted cells, but a portion of
newly synthesized Kar2p is still translocated. As accumu-
lated Kar2p precursor cannot be translocated post-trans-
lationally, pre-Kar2p is probably targeted co-translation-
ally to the ER membrane in an SRP-independent man-
ner. Thus, there appear to be several possible pathways
to the ER membrane: an SRP-dependent co-transiational
pathway, a post-translational pathway and a possible SRP-
independent co-translational pathway. It is likely that in
wild-type cells the bulk of protein targeting occurs via
the SRP-dependent pathway, and that alternative routes
provide a scavenger pathway only in SRP or SR-deficient
cells. Future research will focus on the molecular nature
of the alternative pathways. It will be interesting to dis-
cover whether the pathways utilize the same translocon
that is used for SRP-dependent translocation.

Examining the 7in vivo role of SRP revealed that pre-
proteins can utilize alternative targeting pathways with
varying efficiencies. This may explain why previous ge-
netic screens in S. cerevisiae failed to detect SRP. A
new selection has been used to isolate a translocation-
defective mutant in a novel gene, Sec65 [34+]. This gene
encodes a homolog to the 19kD subunit of mammalian
SRP [35%¢ 36°*]. The translocation defect present in cells
harboring the mutant allele, sec65- 1, confirms the role of
SRP in targeting and translocation in rivo. Biochemical
and genetic studies demonstrate that Sec65p, SRP54p
and a small cytoplasmic RNA, scR1, are part of a 16S
ribonucleoprotein particle. Sec65p is required for the
integrity of the yeast SRP and promotes, as in the case
of mammalian SRP, the binding of SRP54 [3Ge*].

The in vivo role of SRP has also been studied in other
eukaryotic organisms. Mutations in the gene encoding an
SRP-RNA of Yarrowia lipolytica exhibit a temperature-
dependent growth phenotype [37¢,38¢]. At non-permis-
sive temperatures, the synthesis of a major secreted pro-
tein, alkaline extracellular protease, is dramatically re-
duced, whereas overall protein synthesis is unaffected.
This observation suggests that the mutated SRP is de-
ficient in membrane targeting, but still functions in its
ability to arrest translation of pre-proteins.

Translocation of proteins across the
endoplasmic reticulum membrane

Subsequent to the targeting of a nascent protein, the
ribosome—nascent chain complex associates with the ER
membrane and translocation of the nascent chain across
the membrane proceeds. It has long been proposed that
protein translocation occurs through a proteinaceous
channel. It has been shown that large ion conducting
channels are present in ER membranes [39,40%¢]. Con-
ductance through these channels is dependent on the
release of nascent chains from ribosome—nascent chain
complexes engaged in the process of translocation, sug-
gesting that translocation proceeds through these chan-
nels [40+¢]. These findings also suggest that the ribosome
may play a role in keeping the channels open during pro-
tein translocation.

The protein-conducting channel is likely to be a dy-
namic structure, Its subunit composition may vary at dif-
ferent sequential translocation stages, such as initiation
of translocation, steady-state translocation and termina-
tion of translocation. Different pre-proteins may require
the function of different translocation components. This
may result from the specific targeting pathway that they
utilize, or from topogenic determinants, e.g. stop trans-
fer sequences. One major goal in the field is to identify,
biochemically isolate and determine the function of the
components that play a role in the process of nascent
chain translocation and membrane protein integration.

A major advance in the study of protein translocation was
the development of a reconstitution method by which
translocation competent vesicles can be prepared from
a detergent extract of ER membranes [41]. With this
assay, membrane components involved in translocation
can be identified directly. This reconstitution system has
been utilized successfully to fractionate detergent-solubi-
lized ER membrane components required for transloca-
tion [42¢]. It has also been utilized to analyze whether
components, identified by other approaches, contribute
to the translocation process [43*¢]. Immunodepletion of
SR from the detergent extract, for example, results in a
complete loss of translocation activity. This iz vitro assay,
however, may not readily reveal components required for
the regulation of translocation or components that are
not rate-limiting for translocation.

Crosslinking of nascent chains to membrane compo-
nents has been performed to identify components po-
tentially involved in translocation. Two groups inde-
pendently identified a 35-39kD ER glycoprotein by
photocrosslinking, and termed the crosslinked product
signal sequence receptor (SSRa) and mp39, respectively
(44,45). The 35-39kD glycoprotein does not, however,
appear to be a signal sequence receptor, because mature
portions of secretory proteins can also be crosslinked
to it [45]. Using the deduced size of the glycopro-
tein crosslinking target, a polypeptide was purified and
designated the SSRo. protein [46). This polypeptide is
part of a heterotetrameric membrane protein complex
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[43*¢]. Antibodies raised against SSRa immunoprecipi-
tate crosslinked nascent chains, and Fab fragments block
translocation, consistent with the idea that SSR is close to
the site of translocation [46,47]. To test directly whether
SSR is required for translocation, detergent-solubilized
extracts were immunodepleted of the complex and SSR-
depleted extracts were reconstituted into artificial vesicles
[43°+]. Depletion of SSR does not affect nascent chain tar-
geting, secretory protein translocation or membrane pro-
tein integration [43+*]. A number of explanations could
account for this apparent discrepancy. SSR could function
in translocation in a manner that is not detected by the
in vitro translocation assay. Alternatively, SSR may not be
required for translocation and may only fortuitously be
found in proximity to nascent chains. It is certain, how-
ever, that the polypeptide identified as SSR does not func-
tion as a signal sequence receptor, as its name implies,
and that it is not required for an essential rate-limiting
step in translocation.

Further investigation revealed that translocating nascent
chains can be crosslinked to another glycoprotein in
the same molecular weight range as SSRa [48¢]. Using
crosslinking and reconstitution approaches, the crosslink
target, a membrane glycoprotein termed the translocating
chain associating membrane protein (TRAM), was puri-
fied. The deduced amino acid sequence indicates that
TRAM is a multispanning membrane protein. In a recon-
stitution assay, TRAM is either stimulatory or required for
the efficient translocation of several secretory substrates.

Other ER proteins in the vicinity of translocating nascent
secretory and membrane proteins have been identified
by crosslinking [92,49¢,50*¢]. A 34kD non-glycosylated
membrane protein that is distinct from SSRa and TRAM
crosslinks to both nascent secretory and membrane pro-
tein polypeptides [49]. Similarly, several glycosylated
and non-glycosylated ER membrane proteins, which are
in close proximity to membrane proteins containing
stop-transfer or signal-anchor sequences, have been iden-
tified [9*,50°¢]. Some of these crosslinks may be specific
t0 nascent membrane-spanning proteins and, thus, may
function solely in the integration of membrane proteins
(see High and Dobberstein, this issue, pp 581-586). Syn-
thetic signal peptides have also been photocrosslinked
to specific integral ER membrane proteins (S1¢]. Much
effort in the years to come will be directed at purifying
these proteins identified by crosslinking and determining
their roles in protein translocation and integration,

Ribosome-binding sites present in the ER membrane
are thought to be involved in steady state translocation
of nascent chains. Initially, ribophorin I and I were
thought to mediate ribosome binding to the ER, but
were subsequently shown not to be involved (52, 53,
54]. Ribophorin 1 antibodies, however, block protein
translocation, consistent with their being in close prox-
imity to ribosomes and translocation sites [55]. Recently,
it was observed that a membrane protein complex com-
prised of both ribophorin I and Il and a 48 kD protein is
associated with oligosaccharyltransferase activity [56°].
This suggests that the ribophorins are required to cat-
alyze the attachment of oligosaccharides to proteins, thus

ending the search for the function of ribophorins. Other
ribosome receptor candidates, a 180kD rough ER mem-
brane protein and a 35 kD membrane protein, have been
identified [57,58¢]. Ribosome-binding activity solubilized
and reconstituted from ER membranes, however, does
not cofractionate with the 180 kD protein, indicating that
another, as vet unidentified, protein(s) may function as
the ribosome receptor [59°,60*]. Additional experimen-
tal evidence suggests that the 180kD protein may not
be required for in vitro translocation [61¢]. A definitive
demonstration of a ribosome receptor in the future re-
quires the candidate protein to bind stoichiometrically to
ribosomes.

In S cerevisiae, mutations that disrupt translocation of
pre-proteins across the ER membrane were selected
using pre-protein—enzyme fusions. Mutations in three
genes, SEC61, SEC62 and SECG3, which encode ER
membrane-spanning proteins, impair protein transloca-
tion (25, 62]. It is unclear at the present time whether
all pre-proteins require the products of these. genes
for translocation in viro. Recently, 1 new mutant al-
lele, sec67-3, has been isolated and appears to affect
the translocation of a wide spectrum of secretory pro-
teins as well as the integration of membrane proteins
[34+¢]. Mutations in Sec62p and Sec63p, however, only
appear to affect the translocation a subset of pre-proteins
[25]. Immunoprecipitation and crosslinking experiments
indicate that SecG1p. Sec62p and Sec63p are present in a
multisubunit complex with two other proteins of molec-
ular weights 31.5 and 23 kD , respectively [63]. The veast
KAR2 gene, which encodes a homolog of the mammalian
BiP, is also necessary for translocation [64, 65¢]. Mam-
malian BiP. however, does not appear to be required for
translocation in vitro [66,67].

Preproteins in the process of translocaton can be
crosslinked to Sec61p and Kar2p [68%2,G69*]. Crosslink-
ing of pre-proteins to Sec61p is dependent on functional
Sec62p and SecO3p [69+¢]. With short nascent chains,
crosslinks to Sec62p are also observed [68+¢]. These
observations suggest that Sec62p/Sec63p may act prior
to Sec61p. Although kar2 mutants exhibit translocation
defects in vitro, they do not inhibit crosslinking of pre-
protein to Sec61p as severely [69+¢]. Thus, Kar2p may
act after Sec61p in translocation. Crosslinking of nascent
chains to Sec61p requires ATP hydrolysis [68%*,69¢¢]. The
translocation factor responsible for the ATP-dependent
interaction is unknown. Evidence from the mammalian
system also suggests that a membrane ATPase is required
for translocation [70e, 61°].

In yeast, additional mutations, termed sec70, sec71 and
sec72, have been isolated and shown to cause defects in
protein translocation and membrane protein integration
[71%¢]. Future work will focus on cloning these genes
and determining their role in the process of transloca-
tion and membrane integration. The selection for genes
involved in targeting and translocation has not been ex-
haustive. Thus, it is likely that the development of new se-
lection schemes for mutations will yield additional genes
involved in the process.
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Regulation of protein translocation
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Translocation of pre-proteins across the ER membrane
is modulated in several ways. Determinants contained
within the protein, such as stop-transfer sequences, must
signal the translocation apparatus via some mechanism.
Recently, another topogenic determinant has been dis-
covered [72¢+]: signals contained within apolipoprotein
B can mediate a pause in translocation. Whether a spe-
cific translocon component mediates this pause in trans-
location remains to be determined.

There is increasing evidence that the ribosome also plays
a role in the regulation of translocation. lonic conduc-
tance through the putative protein translocation chan-
nels in the ER membrane depends on the presence of
a rihosome engaged in translocation of a nascent chain
[40%¢]. Consistent with these findings, it was shown by
crosslinking that membrane proteins in the process of
integration remain in the vicinity of specific ER proteins
until termination of translation occurs [50¢¢]. Upon ter-
mination, crosslinks to these ER proteins no longer form.
Even after the cyvtoplasmic tail of a nascent membrane
protein has been lengthened by nearly 100 amino acids,
the stop-transfer signal remains in the vicinity of specific
ER membrane proteins. This suggests that the ribosome,
upon termination of translation, transduces a signal to
the translocon to complete membrane protein integra-
tion {S0ee].

Conclusion

The mechanisms employed for targeting and transloca-
tion of pre-proteins across the ER membrane have only
begun to be resolved. Three distinct GTPases are known
to interact during protein targeting, and the functional
importance of the individual GTP-binding sites is still
a mystery. In addition to SRP-mediated targeting, there
appear to be other targeting pathways to the ER. Future
goals will be o identify components in other targeting
pathways and to determine their relative importance in
pre-protein targeting i vivo.

A number of putative components of the translocon have
been identified. Surprisingly however, at present there
is no correspondence between the components identi-
fied in yeast and mammalian cells. Much of the effort in
the field will be devoted to obtain additional membrane
components and to decipher their mechanistic function
in translocation. In pursuing this goal, we will gain insight
into whether different pre-proteins may require a differ-
ent subset of components for translocation as a result of
the specific targeting pathway that they use or as a re-
sult of specific topogenic determinants contained within
them. Insights will also be gained into the regulatory
mechanisms that govern the assembly and disassembly
of the translocon and the ribosome during the transloca-
tion of pre-proteins across the ER membrane.
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