Walter Lab

  • Walter Lab
  • Research
    • The Unfolded Protein Response and IRE1 Signaling in Health and Disease
    • Organellar quality control, dynamics, and inheritance
    • RNA processing in the unfolded protein response
    • The integrated stress response and its role in cognition
    • ATF6-branch signaling through regulated proteolysis
  • Lab Members
    • Current
    • Alumni
  • Contact Us
  • Social
  • Publications
  • News & Notes

Structure of the most conserved internal loop in SRP RNA.

Schmitz U, James T, Lukavsky P, Walter P. Structure of the most conserved internal loop in SRP RNA. Nat Struct Biol 6:634-8, 1999
(PMID : 10404218) (PDF)

Abstract

The signal recognition particle (SRP) directs translating ribosomes to the protein translocation apparatus of endoplasmic reticulum (ER) membrane or the bacterial plasma membrane. The SRP is universally conserved, and in prokaryotes consists of two essential subunits, SRP RNA and SRP54, the latter of which binds to signal sequences on the nascent protein chains. Here we describe the solution NMR structure of a 28-mer RNA composing the most conserved part of SRP RNA to which SRP54 binds. Central to this function is a six-nucleotide internal loop that assumes a novel Mg2+-dependent structure with unusual cross-strand interactions; besides a cross-strand A/A stack, two guanines form hydrogen bonds with opposite-strand phosphates. The structure completely explains the phylogenetic conservation of the loop bases, underlining its importance for SRP54 binding and SRP function.


Deprecated: genesis_footer_creds_text is deprecated since version 3.1.0! Use genesis_pre_get_option_footer_text instead. This filter is no longer supported. You can now modify your footer text using the Theme Settings. in /nas/content/live/wlabdemo/wp-includes/functions.php on line 5698

Copyright © 2022  Walter Lab | University of California, San Francisco | Howard Hughes Medical Institute