Walter Lab

  • Walter Lab
  • Research
    • The Unfolded Protein Response and IRE1 Signaling in Health and Disease
    • Organellar quality control, dynamics, and inheritance
    • RNA processing in the unfolded protein response
    • The integrated stress response and its role in cognition
    • ATF6-branch signaling through regulated proteolysis
  • Lab Members
    • Current
    • Alumni
  • Contact Us
  • Social
  • Publications
  • News & Notes

A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response.

Niwa M, Sidrauski C, Kaufman R, Walter P. A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 99:691-702, 1999
(PMID : 10619423) (PDF)

Abstract

The unfolded protein response (UPR) mediates signaling from the endoplasmic reticulum to the nucleus. In yeast, a key regulatory step in the UPR is the spliceosome-independent splicing of HAC1 mRNA encoding a UPR-specific transcription factor, which is initiated by the transmembrane kinase/endoribonuclease Ire1. We show that yeast HAC1 mRNA is correctly spliced in mammalian cells upon UPR induction and that mammalian Ire1 can precisely cleave both splice junctions. Surprisingly, UPR induction leads to proteolytic cleavage of Ire1, releasing fragments containing the kinase and nuclease domains that accumulate in the nucleus. Nuclear localization and UPR induction are reduced in presenilin-1 knockout cells. These results suggest that the salient features of the UPR are conserved among eukaryotic cells and that presenilin-1 controls Ire1 proteolysis in mammalian cells.


Deprecated: genesis_footer_creds_text is deprecated since version 3.1.0! Use genesis_pre_get_option_footer_text instead. This filter is no longer supported. You can now modify your footer text using the Theme Settings. in /nas/content/live/wlabdemo/wp-includes/functions.php on line 5698

Copyright © 2022  Walter Lab | University of California, San Francisco | Howard Hughes Medical Institute