Walter Lab

  • Walter Lab
  • Research
    • The Unfolded Protein Response and IRE1 Signaling in Health and Disease
    • Organellar quality control, dynamics, and inheritance
    • RNA processing in the unfolded protein response
    • The integrated stress response and its role in cognition
    • ATF6-branch signaling through regulated proteolysis
  • Lab Members
    • Current
    • Alumni
  • Contact Us
  • Social
  • Publications
  • News & Notes

Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease

Niwa M, Patil C, DeRisi J, Walter P. Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease. Gen Biol 6:R3, 2004
(PMID : 15642095) (PDF)

Abstract

The unfolded protein response (UPR) allows intracellular feedback regulation that adjusts the protein-folding capacity of the endoplasmic reticulum (ER) according to need. The signal from the ER lumen is transmitted by the ER-transmembrane kinase Ire1, which upon activation displays a site-specific endoribonuclease activity. Endonucleolytic cleavage of the intron from the HAC1 mRNA (encoding a UPR-specific transcription factor) is the first step in a nonconventional mRNA splicing pathway; the released exons are then joined by tRNA ligase. Because only the spliced mRNA is translated, splicing is the key regulatory step of the UPR.


Deprecated: genesis_footer_creds_text is deprecated since version 3.1.0! Use genesis_pre_get_option_footer_text instead. This filter is no longer supported. You can now modify your footer text using the Theme Settings. in /nas/content/live/wlabdemo/wp-includes/functions.php on line 5698

Copyright © 2022  Walter Lab | University of California, San Francisco | Howard Hughes Medical Institute